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Abstract

Bodies of water manifest rich physical interactions via non-
linear dynamics. Yet, humans can successfully perceive and
negotiate such systems in everyday life. Here, we hypoth-
esize that liquid bodies play such an integral role in hu-
man life that the mind automatically computes their approx-
imate flow-paths, with attention dynamically deployed to ef-
ficiently predict flow trajectories using coarse mental simu-
lation. When viewing animations of liquids flowing through
maze-like scenes, we asked participants to detect temporary
slowdowns embedded in these animations. This task, without
any overt prompt of path or prediction, reveals that detection
rates vary with the moment-to-moment changes in coarse flow-
path predictions. Critically, coarse predictions better explain
trial-level detection rates than a finer-grained alternative, in-
dependently of bottom-up salience of slowdowns. This work
suggests liquid flow-path prediction as an implicit task in the
mind, and introduces rich attentional dynamics as a new win-
dow into intuitive physics computations.

Keywords: intuitive physics; prediction; attention; liquid per-
ception; mental simulation

Introduction
As a body of water splashes and flows, complex and dynamic
interactions occur between the liquid and the rigid surfaces
it collides with. Despite this, humans have no trouble per-
ceiving liquids (Van Assen, Barla, & Fleming, 2018) or inter-
acting with them. How can the mind keep up with a sys-
tem as dynamic as liquids during perception or planning?
A common computational principle, which is used to both
explain the nature of perception (Clark, 2013) and to build
artifacts for controlling complex systems (Holkar & Wagh-
mare, 2010), is prediction. Often these predictions need not
to be precise (Clark, 2015) – approximate predictions can
guide adaptive processing (Gerstenberg, Peterson, Goodman,
Lagnado, & Tenenbaum, 2017) and inform an initial plan in
a controller (Tassa, Erez, & Todorov, 2012).

Here, we ask: Does the mind, during visual processing of
liquid flow, make spontaneous coarse-grained predictions to
estimate the overall trajectory the liquid will take? Given
the importance of liquid bodies in human life (and in biol-
ogy more generally) and the peril it can cause to miscalculate
the path such a body of liquid will take, it is plausible that
the mind makes such predictions automatically. We hypothe-
size that the mind makes spontaneous flow-path predictions,
and how these predictions change at small time increments
drive attentional dynamics; e.g., the higher the momentary

changes in the estimated flow-path, the more attention is to
be deployed.

We consider perception of liquid flow through maze-
like configurations of rigid surfaces and introduce a new
performance-based psychophysics task to measure behavioral
signals related to intuitive physics computations. Instead of a
task that overtly queries intuitive physics, such as prediction
or reasoning, we implement a new task, inspired by recent
work (Yasuda, Yates, & Yildirim, 2021), in which prediction
or path of the liquid is not necessarily relevant nor explicitly
mentioned. This task measures the fine temporal dynamics of
attentional deployment during spontaneous visual processing
of video stimuli, which we posit provides a new window onto
intuitive physics related computations in the mind.

In particular, we simulated nine brief naturalistic anima-
tions of liquids interacting with 25 planks in a 5-by-5 maze
formation (Fig. 1A). The liquid flowed from the top of the
planks. We transiently (120 ms) slowed down each anima-
tion at one of 18 different time points and recruited partici-
pants (N=30 per scene and time point combination) to press
a key when they noticed a pause, with the idea that detection
accuracy would reflect the degree of attentional deployment.

Crucially, this task does not overtly involve intuitive
physics nor mentions anything specific about the perception
of liquid flow – it merely asks participants the tangential task
of noticing a temporary slow-down in the video. We com-
pared the temporal patterns of human’s detection rates to four
different covariates derived from either predictive or purely
sensory computational mechanisms. We found that coarse-
predictions about the liquid flow-path explains many sub-
tleties of human detection rates, and does so when accounting
for a hybrid prediction alternative as well as bottom-up fac-
tors (pixels and the later layers of a pretrained deep convolu-
tional neural network).

Our study is inspired by and builds on the work of Bates,
Yildirim, Tenenbaum, and Battaglia (2019). They used pre-
diction tasks (e.g., “which bin will have most liquid”) and
computational modeling to study human intuitions of how liq-
uids flow in similarly complex scenes as ours. Building on the
earlier classic work by Battaglia, Hamrick, and Tenenbaum
(2013), they provided evidence for a dynamics-based, simu-
latable representation of liquids as the driver of these predic-
tions. Here, unlike the explicit, reasoning-like behavioral task
setting their study explored, we focus on automatic processes



Figure 1: Behavioral experiment and stimuli. (A) The temporal probe detection experiment. (B) Screenshots of the approxi-
mately middle frames of each of the nine base maze animations we studied.

that unfold during the perception of complex liquid flow, af-
forded by the structure of our psychophysical task. Indeed,
we suggest that estimating the coarse path the liquid will take
might be an implicit goal in the mind, which drives atten-
tional dynamics during spontaneous visual processing. The
computational mechanisms identified in this previous work
might also partially underlie the behavior we measure here;
in such a case, by showing that these simulations can be auto-
matically deployed during spontaneous processing, our work
confers a heightened degree of realism to simulation-based
representations for intuitive physics.

Experiment: Temporal probe detection
We aimed to measure moment-to-moment attentional distri-
bution during spontaneous visual processing of liquid flow.
Following recent work on event segmentation (Yasuda et al.,
2021), we showed participants brief animations of liquids
flowing through a maze-like obstacle course, and asked them
to indicate when they notice a temporary slowing of the ani-
mation.

Participants
We recruited 180 participants using Prolific (https://www
.prolific.co), a crowdsourcing platform. The experiment
was conducted using Psiturk (Gureckis et al., 2016). Partic-
ipants agreed electronically to the consent form before the
experiment began. The experiment lasted less than 15 min-
utes on average and participants received a compensation of
$2 upon completion. This study was approved by an Institu-
tional Review Board (IRB).

Stimuli
The stimuli are based on brief animations of a water-like liq-
uid flowing through a maze of 25 randomly rotated planks,
configured 5 in a row with 5 rows in total (e.g., Fig. 1A). The
animations are initialized with a blue-colored liquid ball at
the top of the maze, positioned either just above the second,

third, or fourth columns of planks. The liquid flow was sim-
ulated using SPlisHSPlasH (Bender, Kugelstadt, Weiler, &
Koschier, 2020), a Smoothed Particle Hydrodynamics (SPH)
solver. In SPH, behavior of fluid is approximated with a
collection of particles, each representing a small package of
fluid. We chose the simulation parameters to mimic water be-
havior as closely as possible (Gravity=[0,-0.98,0], viscosity =
0.01, surface tension = 0.05). After the simulation, the scenes
were rendered in Blender (ver. 2.83) (www.blender.org).
The length of each animation is 125 frames, formed into a
video at 25 FPS, making a total duration of 5 seconds.

We made nine “base” animations, each with a different
maze configuration. The initial liquid configuration was
equally distributed across the three possible locations men-
tioned above. Maze configurations were hand-curated to en-
sure the liquid did not branch too much to become distracting.

For each video, we introduced “temporal probes” – tempo-
rary slowdowns of the video at chosen time-points. At most
one slowdown could occur in a video presented to partici-
pants. To generate a slowdown, we paused the video through
one of the 18 evenly spaced 3-frame windows, by copying the
middle of the these 3 frames across the window. This resulted
in a 120-millisecond slowdown (Fig. 1A). The 18 windows
consisted of every other 3-frame sequence and excluded the
beginning and final 10 frames. This resulted in 9×18 = 162
stimuli videos, which we divided into 6 conditions. In each
condition, there were 27 videos with temporal probes, in ad-
dition to 27 unmodified original animations without a probe
(obtained by repeating each of the 9 original animations three
times). In each condition and for each participant, videos
were shuffled and presented in a random order.

Procedure
Before the experiment began, participants were asked to scale
a bounding rectangle to the size of a ID card, to ensure that
the size of the following video stimuli were approximately the
same across participants. They then were shown the experi-
ment instructions, during which participants were informed

https://www.prolific.co
https://www.prolific.co
www.blender.org


Figure 2: Behavioral results. (A) Detection rates for each scene as a function of time window. (B) The pairwise similarity
structure of the detection rates across the nine scenes we studied.

that not all videos have a pause and were shown an exam-
ple maze. Participants then completed two practice trials, and
their understanding of the instructions were checked with a
comprehension quiz. If either of the two questions on the quiz
was answered incorrectly, the instructions and practice trials
were repeated, and participants only proceeded to the main
experimental trials once they obtained 100% on the compre-
hension test. During the experiment, participants were asked
to view the stimuli video and press space bar whenever they
noticed a pause in the video. Videos were shown centrally on
the screen with a three seconds countdown before the start.
The border around the video flashed red when it registered
a spacebar response; otherwise, the border was black. Af-
ter each video finished, participants rated their confidence
on a sliding scale from ‘Not very confident’ to ‘Very con-
fident’. Progress through the experiment was shown with a
trial counter on the bottom of the screen. After completing
the experimental trials, participants were asked a series of de-
briefing questions about task difficulty, engagement, and any
feedback they had about the task.

Behavioral results

Time course of detection accuracy is non-uniform over
time and systematic across scenes For our main behav-
ioral analysis, we asked whether detection accuracy across 18
evenly spaced temporal probes are significantly non-uniform
within each scene. Detection accuracy is defined as the ra-
tio of the number of participants who detected the probe to
the number of responses on that trial. To count the number
of detection for each temporal probe, we calculated the pro-
portion of participants who indicated the slowdown within
the 1000ms interval after the corresponding slowdown oc-
curred. To determine whether detection rates are uniformly
distributed across time windows, we performed chi-squared
tests for goodness of fit, separately for each scene. We found

that all nine scenes showed significantly variable detection
rates (Fig. 2A), reflecting a non-uniform distribution of at-
tentional deployment.

We also found that the detection performance has a stereo-
typical shape across scenes, with the detection rates rising
early on in the video and decaying with a long-tail later on in
the video. The average correlation between the detection rates
of pairs of scenes is r = .76 (range = 0.59 - 0.87; Fig. 2B),
indicating that despite the stereotypical shape of detections,
there is also appreciable variability from scene to scene.

In our models, we will aim to explain the fine-grained pat-
terns of detection rates in Fig. 2A as well as the similarity
structure of slowdown detectability across the nine anima-
tions in Fig. 2B.

Confidence ratings Finally, we also analyzed participants’
confidence ratings to test whether confidence varies as a func-
tion of scene identity or time window. For the latter, we coded
it as a binary variable with each time window belonging either
to the first or second-half of the video. A two-way ANOVA
returned no main of effect of scene identity, a marginally sig-
nificant effect of time window, and no interaction. This result
suggests that participants’ confidence ratings are minimally
impacted by their performance (decreasing slightly from the
first to second half).

Models

Here, we consider four models to understand the observed
dynamics of detection rates. Two of these predictors – coarse
simulation and hybrid simulation – allow us to quantify what
lies ahead of the observer: the sensitivity of predicted flow-
path to increments in time, based on intuitive physics. The
other two predictors – pixels and VGG16 – allow us to ac-
count for what is right in front of the observer: the bottom-up
salience of the slow-down of the video.



Figure 3: Models. (A) An example of a single liquid particle’s predicted path according to the kinematics-only coarse sim-
ulation. (B) Predicted path given the ground-truth liquid particle positions from the SPH simulator. (C) Hybrid model. (D)
Bottom-up visual features including pixels and the penultimate layer of a pretrained VGG16 network.

Coarse simulation
We hypothesize that the mind spontaneously predicts the path
the liquid will take, and the sensitivity of this prediction to
increments in time drives attentional deployment. Such adap-
tive deployment of attention should inform the actual percep-
tual processing, leading to more precise representations of the
liquid if the flow-path predictions are too variable over time
or resulting in noisier representations if the flow-path predic-
tions seem to not change very much. We note that this paper
does not implement this perceptual processing, but instead
considers flow-path prediction as an “implicit task” that might
inform the adaptive deployment of attention.

We implement these flow-path predictions using a coarse,
kinematics-only simulation model (Fig. 3A, B). At each
time point, this model takes as input particle positions from
the SPH simulator underlying our stimuli (SPlisHSPlasH),
and completes the path each of these liquid particles will
take. This prediction is not based on a dynamics simulation.
Rather, it follows the heuristic that liquid particle will move
in the direction of gravity, until it hits a rigid surface, in which
case it will move along the rigid surface. This is an adapta-
tion of the “gravity heuristic” model from Bates et al. (2019),
which was inspired by Gardin and Meltzer (1989) and Forbus
(1984).1 Specifically, for each particle position at the cur-
rent time point, we solve a set of linear equations to get the
paths each particle will take through the scene. We aggregate
these paths across particles by overlaying them, resulting in
the predicted flow-path from the current time point (Fig. 3B).

To relate this model to behavior, we predict the detection
rate for a given 3-frame window as the following. In the
given 3-frame window, we calculate the average change in
the predicted flow-path between each consecutive frame (i.e.,
from the first frame to the second frame, and from the sec-

1We note that in this paper, we have no commitment in terms
of the exact nature of the coarse simulation (e.g., whether it is
dynamics-based or kinematics-only); instead, we are more generally
interested in exploring approximate forms of simulation.

ond frame to the third frame) using L2-distance. We calculate
this average change for each of the 18 such windows through-
out the video. The resulting vector of average changes in the
predicted flow-path is then compared to behavioral detection
rates.

Hybrid simulation
We also explore a more finer-grained hybrid simulation
model. In this model, to obtain a prediction of flow-path
at a time point, we first play forward the liquid simultion k
time steps using SPH, and then execute the coarse simulation
model based on the positions of the particles at that time point
(Fig. 3C). In contrast to coarse simulation that only considers
gravity and maze geometry, this model incorporates dynam-
ics for the initial k time steps of prediction (including momen-
tum and particle-particle interactions). (In our simulations,
we set k = 5.) Due to the stochasticity in the SPlisHSPlasH
engine, we simulate each scene for 5 times and calculate the
average position per particle in each frame for each scene,
before proceeding to the coarse portion of the simulation.

To relate this model to behavior, we follow the identical
procedure as the coarse model. That is, we use the average
L2-distance between the flow-path predictions of the consec-
utive frames of each 3-frame window, which is done for each
of the 18 windows.

Pixels
In addition to top-down, goal-driven processes, visual atten-
tion is also attracted to salient stimuli (Pashler, 2000). It is
expected that considerable changes in lower-level visual fea-
tures (a sudden color or shape change) will influence atten-
tion deployment. Thus, we wish to establish that above and
beyond the influence of lower-level visual features, forward
simulation can explain additional variance in human atten-
tion deployment. We therefore considered pixel changes as
an additional covariate (Fig. 3D). To do this, for a given 3-
frame window, we calculated average of L2-distance between
the pixel images of the consecutive frames (like the coarse



Figure 4: Comparison of models to behavior. (A, B) A bar chart and scatter plots showing the fine-grained relationship between
models and behavioral detection rates. (C) Spearman’s rank correlation between the similarity structure of behavioral vs.
model-predicted detection rates. (D) Similarity matrices of each model (compare to Fig. 2).

simulation model), and we did so for each of the 18 win-
dows. (Notice that this is the identical procedure we use to
relate prediction models to behavior.) The resulting vector of
average pixel-level differences quantifies our low-level visual
features predictor of attention.

VGG16
Following previous work (R. Zhang, Isola, Efros, Shechtman,
& Wang, 2018), in addition to low-level pixels, we also tested
more abstract or complex visual features using the penulti-
mate layer of the VGG16 model (Simonyan & Zisserman,
2014),2 a deep convolutional neural network pre-trained on
the ImageNet dataset (Deng et al., 2009) (Fig. 3D). To relate
this model to behavior, we again followed the same procedure
as other models: For a given 3-frame window, we calculated
average of L2-distance between the VGG16 activations of the
consecutive frames of this window, and we did so for each of
the 18 windows.

Model vs. behavior comparisons
Explaining trial-level detection rates We first compared
behavioral detection rates with the four models introduced
– coarse simulation, hybrid simulation, pixels and VGG16
– at the level of individual temporal probe trials (Fig. 4A,
B). Using regression, we test whether each model’s detection
rate predictions correlate with participants’ detection rates
(n = 162 trials). Strikingly, we found that some models we
explored (coarse simulation and pixels) reached human split-
half correlation confidence interval (CI [0.40, 0.57], shaded
region in Fig. 4A, left panel). The coarse simulation model
(but not pixels) explained more variance than each of the re-

2We also considered the earlier fully connected layer, which led
to a slightly worse fit.

maining two model alternatives (p < .05 two-tailed pairwise
comparisons using Fisher r-to-z transformation). These re-
sults suggest that beyond bottom-up salience, spontaneous
predictions about a system as complex as liquid flow drive
dynamic allocation of attention.

Explaining maze-level similarity of detection rates As
we illustrated in our behavioral results in Fig. 2B, there is
some measure of similarity between pairs of mazes in the way
detection rates change over time. Here, we ask whether this
similarity structure can be accounted for by the models, us-
ing representational similarity analysis (Kriegeskorte, Mur, &
Bandettini, 2008). Paralleling our pairwise behavioral simi-
larity matrix from Fig. 2B, a similarity matrix for each model
is obtained by calculating the correlation between pairs of
scenes using model-predicted detection rates. These model-
based similarity matrices are presented in Fig. 4D. We found
the coarse simulation model significantly correlated with the
behavioral similarity matrix (ρ = 0.43, p < .01; Fig. 4C, us-
ing Spearman’s rank correlation). Other models also corre-
lated significantly, but to lesser degree numerically (hybrid:
ρ = 0.39, p < .01; VGG16: ρ = 0.39, p < .01), except the
pixels-based similarity matrix, which was only marginally
correlated with data (ρ = 0.28, p = .06; Fig. 4C). These re-
sults suggest that beyond low-level visual features, flow-path
predictions explain the similarity structure of how liquid flow
is experienced across different scene configuration.

Coarse model explains unique variance in detection rates
and similarity structure Lastly we ask whether the coarse
simulation model explains additional variance when control-
ling for other models. First, focusing on Fig. 4A, we cal-
culate 1) the partial correlation between coarse model and
behavioral detection rates, after removing the effect of other



Figure 5: Partial correlation analysis. (A, B) Partial correlation analyses using detection rates. (C, D) Partial correlation
analyses using the similarity structure of detection rates across scene pairs.

models, and 2) the partial correlation between other mod-
els and behavioral detection rates, after removing the coarse
model’s effect. We found that the coarse simulation model
explains similar amounts of variance after residualizing each
of the other models (hybrid: r = 0.39, p < 0.001; pixels:
r = 0.36, p < 0.001; VGG16: r = 0.39, p < 0.001; Figure
5A). In the other direction, i.e., after residualizing the ef-
fect of the coarse simulation model, only pixels continued
to significantly explain variance in detection rates (hybrid:
r = −0.009, p = 0.91; pixels: r = 0.33, p < 0.001; VGG16:
r = 0.09, p = 0.24; Fig. 5B). These results establish that
coarse model flow-path predictions subsume all of the vari-
ance explained by the hybrid model in detection rates, and
explain additional variance in attentional patterns above and
beyond bottom-up salience.

Second, focusing on Fig. 4C, we calculate 1) the partial
correlation between the similarity of scenes observed in be-
havior vs. predicted by the coarse model, after removing the
effect of other models, and 2) the partial correlation between
the similarity of scenes observed in behavior vs. predicted by
other models, after removing the effect of the coarse model.
For this partial correlation analysis, we use linear correlation
(Pearson’s r). As Fig. 5C shows, the coarse model contin-
ues to explain unique additional variance relative to all of the
alternatives. However, in the other direction, only the hy-
brid model survives this partial regression analysis (Fig. 5D).
Together, these results establish the coarse flow-path predic-
tions as the only model that consistently accounts for behav-
ior across detection rates, scene similarity, and partialing an-
laysis.

Discussion
In this study, using computational probes and a performance-
based task, which does not overtly relate to prediction or liq-
uid flow, we presented evidence in support of the hypothe-
sis that the mind automatically computes flow-paths of liq-
uid bodies. During liquid-flow perception, we speculate that

attention is dynamically deployed to efficiently resolve liq-
uid trajectories using coarse mental simulation. In compar-
isons to plausible alternatives, we showed that flow-path pre-
dictions arising from coarse simulations, which are based on
simple geometric heuristics, explains both detailed trial-level
detection rates, as well as the similarity structure of these
detection rates across the nine maze animations we consid-
ered. Coarse model predicted variance beyond both bottom-
up salience (operationalized using pixels and VGG16), as
well as a finer hybrid model. These results suggest flow-
path prediction as an implicit task in the mind, and intro-
duces attentional dynamics as a revealing window onto in-
tuitive physics.

There are multiple limitations to our work. As we noted
earlier, our work does not provide a computational mecha-
nism to actually produce these attentional dynamics or to use
them for guiding perceptual processing. Existing work on
perception of liquids focus on the perception of liquid viscos-
ity (Van Assen et al., 2018; van Assen, Nishida, & Fleming,
2020; Y. Zhang, Bi, & Yildirim, 2022), instead of tracking
the liquid as it flows. We leave the development of an in-
tegrated attention/perception model of liquid flow perception
as future work, however we point to a recent study that con-
sidered similar goal-driven perceptual processing problems in
the domain of place perception and navigation-related goals
(Belledonne & Yildirim, 2021). Our work explored four com-
putational probes and their relation with behavioral signals
we measures. However, we can build more on the work of
Bates et al. (2019) and Sanchez-Gonzalez et al. (2020) to ex-
plore a wider range of simulation substrates, in addition to the
coarse simulation presented here. Even though our results
suggest that we explain data essentially at the noise-ceiling
level using this kinematics-only method, future work should
explore a wider range of approximate simulations. Finally,
future psychophysical work should consider extending this
work to measuring the spatial distribution of attention in re-
lation to the spatial pattern of coarse predictions.
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