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Perception of 3D shape integrates intuitive 
physics and analysis-by-synthesis

Ilker Yildirim    1,2,3,7 , Max H. Siegel    4,5,7 , Amir A. Soltani4,5,7, 
Shraman Ray Chaudhuri    6 & Joshua B. Tenenbaum    4,5 

Many surface cues support three-dimensional shape perception, but 
humans can sometimes still see shape when these features are missing—
such as when an object is covered with a draped cloth. Here we propose 
a framework for three-dimensional shape perception that explains 
perception in both typical and atypical cases as analysis-by-synthesis, 
or inference in a generative model of image formation. The model 
integrates intuitive physics to explain how shape can be inferred from the 
deformations it causes to other objects, as in cloth draping. Behavioural 
and computational studies comparing this account with several alternatives 
show that it best matches human observers (total n = 174) in both accuracy 
and response times, and is the only model that correlates significantly 
with human performance on difficult discriminations. We suggest that 
bottom-up deep neural network models are not fully adequate accounts of 
human shape perception, and point to how machine vision systems might 
achieve more human-like robustness.

For more than a century, vision scientists have studied the many 
cues that humans or machines use to recover shape. Edges or bound-
ing contours, gradients of shading or texture, stereo disparity and 
motion parallax are just a few of the cues that can be computed from 
the visible surface of an object and that can reliably indicate an object’s 
three-dimensional (3D) shape across different views1. When avail-
able, surface cues effectively support shape perception in humans 
and machines. However, a set of recent studies2–5 present a challenge 
to the classical cue-based theory of shape perception: even when a 
surface is obscured, humans can sometimes perceive shape, without 
directly seeing the object at all. Consider the synthesized images of 
cloth-covered objects in Fig. 1a,b, in which each object is completely 
occluded by a thin, cotton-like fabric draping over it. Although the 
draped shapes look very different from the comparison objects (shown 
in randomly chosen orientations), observers can nonetheless pick 
out which unoccluded airplane or chair matches the 3D shape of the 
appropriate occluded object (answers: Fig. 1b, top left matches bottom 
left; Fig. 1b, top left matches bottom right).

In this Article, we ask: how can people perceive object shape (and 
pose, size, category and so on) in these images, when all the classic 
visual cues are mostly or entirely absent? Even those image cues that are 
present may be highly misleading, as they belong not to the underlying 
object’s shape but to the surface of the occluding cloth. Somehow we 
are able to interpret the shape of the cloth as an interaction between 
the underlying rigid object’s geometry and the way the cloth drapes and 
deforms upon contact. While sculptors have long exploited this capac-
ity of the visual system to depict human faces and figures, only recently 
have detailed behavioural studies provided convincing evidence that 
humans somehow ‘undo’3,5 the effect of the cloth to access the hidden 
object. Thus far, a computational account of vision that can explain 
shape perception, even in the absence of surface cues, remains absent.

There are at least two ways one might explain how people perceive 
the shape of draped objects, corresponding to two contemporary 
frameworks which each seek to advance beyond classical cue-based 
approaches to 3D shape. One possibility is that, instead of a relatively 
constrained set of interpretable, meaningful cues, often derived from 
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bottom-up image cues or features that reliably and robustly encode 
an object’s 3D shape even in such atypical, rare conditions. Instead, 
a system should model individual, scene-level causes—the physical 
objects and processes that generate images—and how they combine 
and yield visual input. Then, by reversing their effects, it may recover 
the original physical scene. Thus a visual system could still identify a 
draped object and even perceive its fine-grained 3D shape if it were 
able to model and somehow invert cloth physics.

Our goal in this paper is to use the perception of objects under cloth 
as a case study to evaluate concrete versions of each of these accounts 
of shape perception. The theoretical merits of the pure bottom-up and 
top-down approaches have been extensively debated in the literature, 
but it has been difficult to find strong evidence distinguishing the 
bottom-up cue-based and top-down model-based approaches; until 
recently, neither discriminative classifiers nor Bayesian generative 
models performed well in realistic visual tasks, so comparisons with 
biological vision were limited to controlled scenarios with simplified, 
non-naturalistic stimuli11. Advances in algorithms and computing 
hardware, however, have led to DCNN and analysis-by-synthesis models 
that achieve good performance with complex natural images and can 
now be rigorously evaluated as models of how we perceive 3D shape in 
challenging cases with rich naturalistic stimuli. They also let us explore 
various hybrid accounts that so far have received very little direct 
evaluation in human psychophysics: in particular, we compare human 
judgements with top-down analysis-by-synthesis models attempting 
to match images at either the level of raw pixels or intermediate-level 
representations based on DCNN features.

To our knowledge, only two empirical studies12,13 have compared 
modern neural networks with Bayesian models as accounts of human 
perception (although a number of papers evaluate either one or 
the other type of model; see for example refs. 14,15). For example, 
ref. 13 defined a compositional generative model of 3D shape and 

an analysis of the geometry of objects and of image formation pro-
cesses, the human visual system might engage a much larger set of cues 
that are obtained through some black-box learning mechanism (and 
are therefore difficult to write down or interpret). Recent computer 
vision models based on deep convolutional neural networks (DCNNs) 
have demonstrated learned feature hierarchies that facilitate impres-
sive object recognition capabilities6,7 and that are relatively robust 
to variation in appearance and pose even though the model training 
objective does not explicitly include these goals. Moreover, these same 
features have been shown to enable many other seemingly disparate 
visual tasks, including shape perception, with only minor adaptation 
(for example, fine-tuning, or adding one or a small number of addi-
tional output layers)8. Perhaps these features are sufficiently robust 
to generalize across even more extreme image transformations, such 
as cloth occlusion.

A second possibility is that we see 3D shape via ‘analysis by syn-
thesis’, or inference in a physics-based generative model of how scenes 
form and give rise to images9,10. On this view, shape perception is not 
driven solely or primarily by a fixed, universal set of image cues, com-
puted bottom-up from any image and sufficient for any downstream 
task. Instead, we infer 3D shape through a top-down interpretation 
process based on an internal model of how images are formed and the 
role that shape plays in that model. The generative model approach 
sees cloth draping as just one exemplar of a potentially unbounded 
space of atypical presentations of objects, in which some aspects of 
the physics of scenes and images grossly alter an object’s appearance 
from its typical form while remaining easily interpretable by humans: 
consider as other examples viewing an object such as the chair or 
airplane in Fig. 1 outside in a rainstorm, or under 10 feet of cloudy 
water, or through coloured plastic wrap, or in the light of a full moon 
at night. The open-ended compositionality of the visual world may 
imply that it is difficult or impossible to specify or learn a single set of 
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e

Fig. 1 | Seeing 3D shape through a cloth. a, Bottom row: two different airplanes. 
Top row: the same airplanes, draped with cloth and presented in random order 
and in a random pose. b, Same as a but for two different chairs. Despite the 
variation in viewpoint and complete occlusion of the cloth-draped objects, 
human observers can still match the cloth-draped and unoccluded object pairs 
(see note in main text for correct answer). c–e, Sculptors have long displayed 

their skill in works that are crafted from a single rigid material but convey both 
an illusory effect of cloth draping and rich 3D shape for the object under the 
illusory cloth, as in Giovanni Strazza’s (c. 1850s) ‘Veiled Virgin’ (c, marble), Gabriel 
Klasmer’s (2000) ‘Car in the Sun’ (d, fibreglass), or Wendell Castle’s (1985) ‘Ghost 
Clock’ (e, mahogany, partially bleached).
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compared human judgements of shape similarity with those derived 
from bottom-up classifiers and from top-down inference in a 3D gen-
erative model, concluding that the latter might underlie shape per-
ception because it correlated better with human responses. But this 
study, while pioneering, provides only limited evidence for top-down 
analysis-by-synthesis in perception. The best bottom-up model was 
also quantitatively predictive of human judgements and performed 
almost as well as the top-down model. With more training and improved 
DCNNs, the quantitative gap between these models might be expected 
to narrow even further. In addition, neither model improved dramati-
cally over a simple baseline matching test to target images at the pixel 
level. Here we demonstrate a stronger, qualitative distinction between 
model classes enabled by our completely occluded cloth-draped stim-
uli: standard DCNNs and pixel-based observers, unlike people and our 
generative models, perform no better than chance on harder instances 
and even with extensive specialized training show little improvement.

Our design choices offer several other advantages. Because we 
chose uncommon stimuli with variable difficulty, we find meaningful 
variance in human performance and response time, which allows for 
finer-grained model evaluations and comparisons of humans and 
models on trial-by-trial speed as well as accuracy. The generative 
model that we consider performs iterative inference with substantial 
stimulus-driven variation in the number of computational steps and 
therefore can be directly compared with subjects’ reaction times, 
potentially revealing signatures and roles for feedback or recurrence 
in biological shape perception.

Results
The object-under-cloth task
While in some cases humans can recognize draped objects from a single 
image (for example, Fig. 1c,d), we chose as our experimental setting a 
visual match-to-sample task that allows us to directly address the above 
two possibilities. We choose this setting as we are primarily interested in 
how generative models can support online, detailed 3D shape percep-
tion, rather than object categorization or any kind of memory-based 
process. The essence of our proposal is that observers may perceive the 
3D shape of cloth-covered objects in arbitrary orientations by approxi-
mately simulating in their minds the process of how cloth drapes over 
the object in three dimensions, and imagining what the resulting 2D 
image would look like. So we constructed an experimental task that 
should be directly solvable via this mechanism: we show observers an 
unoccluded matching object along with a target draped shape (that 
is, the initial matching object rendered in computer graphics under a 
simulation of cloth draping) and an unoccluded distractor object, in a 
two-alternative forced choice task. We call this the ‘occluded’ condition 
to contrast with a control ‘unoccluded’ condition (see below).

We chose ten different everyday object categories (airplane, 
bicycle, bus, car, chair, guitar, motorcycle, pistol, rifle and table) and 
sampled object meshes for each category from a large repository of 3D 
shapes16. We used 24 unique exemplars from each category, yielding 
120 visual-matching trials; each trial used two shapes, and each unique 
shape appeared in one trial. Each trial presented an unoccluded target 
shape, a distractor shape and the target shape after cloth draping. We 
varied the similarity between the distractor and matching items (Fig. 2a, 
right) to generate visual-matching triplets ranging in difficulty. In half 
of the trials, the target and distractor objects were drawn from the same 
category; these we term ‘harder’ trials because same-category shapes 
are generally more difficult to distinguish than different-category 
objects, which we call ‘easier’.

To create the cloth-occluded stimuli, we simulated cloth draping 
via a particle-based physics engine17; we chose simulation parameters 
(for example, number of iterations) and the mechanical and material 
properties of the simulated cloth (for example, stiffness and mass) 
to enable efficient, stable simulation of natural-looking cotton-like 
cloth (Methods).

In the unoccluded condition, we use the same objects but show 
the target shape without cloth (Fig. 2b). In this version of the task, 
viewpoint variability and the shape similarity between the matching 
and distractor test items are the only confounding variables.

Physics-based analysis-by-synthesis
We formalize the problem of matching a cloth covered object with its 
unoccluded counterpart as approximate Bayesian inference in a causal 
generative model. Our physics-based analysis-by-synthesis (PbAS) 
method combines physics and graphics knowledge with statistical 
inference and optimization. The model consists of three compo-
nents: a generative model for scenes and images, feature extraction 
for approximately Bayesian inference (using a pseudo-likelihood 
approach) and a simulator-in-the-loop inference engine based on 
Bayesian optimization. As an account of how people can perceive the 
shapes of objects under cloth (or other challenging viewing condi-
tions), we posit that each of these three components has some ana-
logue in the mind and brain, and that they operate and interact in 
something like the ways we specify here—not precisely as we have 
implemented them, but close enough that the speed and accuracy 
characteristics of the PbAS model can be quantitatively compared 
with human behaviour, along with different model variants and alter-
native accounts.

The generative model in PbAS captures the physical scene varia-
bles, including object shape and pose, cloth properties and the mechan-
ics of how they interact, which together produce the geometry of the 
occluding cloth surface. It further includes a model of graphics—how 
surface geometry, material and light interact to generate an image 
(some factors, such as optics, are handled implicitly; see, for example, 
ref. 18 for an explicit treatment, including modelling, of human repre-
sentation of visual scene geometry). Given a hypothesized 3D object 
shape in a hypothesized pose, the model produces a synthesized or 
hypothetical image which may be compared with the image actually 
observed. In the analysis-by-synthesis framework, perception requires 
inverting this process to recover the object shape and pose likely to 
have given rise to the observed image (Fig. 3a,b).

Like most generative models, PbAS is too complex to invert 
exactly. A ubiquitous approximation algorithm, Markov chain Monte 
Carlo (MCMC), iteratively constructs samples from a target distribution 
like the posterior, but in our case requires far too many iterations to 
work because each step includes costly physics simulation. We sought 
instead to maximize the posterior using Bayesian optimization19, or 
BayesOpt, which relative to MCMC provides a guided inference scheme 
where the next scene hypothesis to evaluate is informed by all (instead 
of only the current) evaluations of the posterior function20. BayesOpt 
simultaneously estimates and optimizes the posterior, providing an 
algorithm that efficiently samples increasingly more probable hypoth-
eses for object shape and rotation given an input occluded image  
(Fig. 3b). The likelihood of a scene hypothesis is computed by com-
paring its corresponding rendered hypothesis image with the input, 
using a feedforward feature hierarchy fenc implemented as the first 
fully connected layer of a pre-trained DCNN7 (see the next section for 
a discussion of this choice). While the goal of inference in our model 
is posterior probability maximization, the optimization trajectory is 
also of interest for comparison with human behaviour.

Psychologically, BayesOpt can be seen as implementing a kind of 
goal-conditioned mental imagery (also see ref. 21 for an application in 
the context of mental rotation), in which the model interprets a target 
object (for example, a cloth-draped image) in the context of test objects 
(Fig. 3a,b), to determine which test object results in a mental image that 
better matches the target. PbAS can arrive at a reasonable percept rap-
idly (Fig. 3c,d) compared with sampling-based methods like standard 
MCMC. It therefore provides a more plausible quantitative standard for 
understanding average human accuracy, how accuracy improves with 
longer viewing time, and stimulus-driven variability in response time.

http://www.nature.com/nathumbehav
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Synthesis: generative model. The generative model consists of (1) 
latent variables describing the scene: a 3D object shape S and its rota-
tion R; (2) a forward physics simulator along with cloth parameters: 
cloth size, position, stiffness, mass and friction, denoted fΨ; and (3) 
a rendering function and lighting parameters, together denoted fΓ. 
We set the physics simulation parameters fΨ and renderer parameters 
fΓ to the same values as used for stimuli generation (see ‘Solving the 
object-under-cloth task using the model’ section in Methods). While 
the model is designed to perceive cloth-covered objects, it applies to 
unoccluded objects, as in the unoccluded task condition, as a special 
case by setting fΨ to the identity function.

Given an occluded input observation (indicated as ‘Input’ in red 
frame, Fig. 3b) and an unoccluded ‘context object’ (in blue frame,  
Fig. 3b), we wish to estimate the object shape S and rotation R that best 
explains the input image. More formally, we wish to invert the genera-
tive model to find scene hypotheses that explain perceptual input using 
Bayesian inference, which amounts to finding the posterior

Pr(S,R|Iobs) ∝ Pr(Iobs|S,R, fΨ, fΓ)Pru(S)Pr(R)δfΨδfΓ
= Pr(Iobs|Ihyp)Pru(S)Pr(R),

(1)

where Pr(Iobs∣S, R, fΨ, fΓ) is a likelihood term induced by the physics 
engine fΨ and rendering function fΓ, and the delta functions select fixed 
physics fΨ and rendering fΓ parameters. For brevity, in the equality in 
equation (1) and below we write Ihyp = fΨ(fΓ(S, R)) for the hypothesis 
image given latent scene parameters and suppress the delta notation. 
We next explain each term.

The context object allows observers to form a distribution Pru(S) 
over the possible shape of the draped object; because the context 
object is presented as a 2D rendering, its shape is uncertain. Even 
though human observers do not need auxiliary shape information to 

process cloth-occluded images, this accompanying context object 
provides a computationally tractable shape hypothesis space for gen-
erative modelling. In this way, PbAS can be thought of as searching over 
a limited hypothesis space of shapes; for future work towards relaxing 
this constraint, see Discussion. We represent this shape uncertainty 
Pru(S) using a categorical distribution over the K nearest neighbours 
of the actual context object (excluding the ground-truth context 
object from the hypothesis space) in a large repository of shapes (the 
ShapeNet dataset16; Fig. 3b). In our simulations we take K = 4 and each 
neighbour is assigned a probability as a function of its distance rank 
(Methods). We place a uniform prior over rotations Pr(R) covering the 
half-sphere centred at canonical pose.

Executing the physics simulator fΨ with a scene hypothesis (a 
sampled shape S and its rotation R) results in a draped cloth geometry 
G (Fig. 3b). Passing the resulting scene to the rendering function fΓ in 
turn yields an image Ihyp = fΓ(G) of the cloth-draped object (Fig. 3b) that 
is a hypothesis image that may be compared with an input observed 
image Iobs to evaluate its likelihood under the scene hypothesis.

The detailed geometry resulting from cloth simulation (for exam-
ple, the particular pattern of wrinkles) can vary substantially with even 
small changes in the values of random variables17; therefore, calculat-
ing an accurate likelihood (through marginalization) for any scene 
hypothesis is computationally intractable20. As a result, we define a 
pseudo-likelihood function Pr(Iobs∣Ihyp) based on the distance D(Iobs, Ihyp) 
between the input and hypothesis images in a suitable feature space 
arising from an encoder fenc(⋅); here, we set D = ℓ1 and adopt the features 
computed by the first fully connected layer of AlexNet7 as the encoder 
fenc. The PbAS (pseudo-)likelihood for an input image, given a hypoth-
esis image rendered from a scene proposal, is then

Pr(Iobs|Ihyp) ∝ exp (−‖‖( fenc(Iobs) − fenc(Ihyp)‖‖1)

a

b

Occluded

Unoccluded

Di�erent category distractor
(easier trials)

Same category distractor
(harder trials)

Which is the same object as above?

Which is the same object as above?

Fig. 2 | Matching a target shape to one of two unoccluded test objects.  
a, Left: a trial in the occluded task condition. The top image shows a ‘target item’, 
the bottom-left image shows a ‘matching test item’ and the bottom-right image 
shows a ‘distractor test item’. Right: trials from the occluded task. Each triplet 
displays, from left to right, target item, matching test item and distractor test 

item for one trial. We show ‘easier’ trials, with different-category distractor 
and matching test items, and ‘harder’ trials, where both test items are of the 
same category. b, Left: a trial from the unoccluded task condition, spatial 
configuration as in a. Right: each triplet shows a trial from the unoccluded task, 
showing instances of easier and harder trials.
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With these choices for the prior and likelihood, the posterior Pr(S, R∣Iobs) 
of equation (1) depends only on two terms: the discrepancy Pr(Iobs∣Ihyp) 
between the observed image and the rendered latent parameters, and 
the uncertainty Pru(S) over the shape of the context image.

By measuring the discrepancy between rendered scene hypoth-
eses and observed images in terms of DCNN encoder-based features,  
the PbAS model as described is an instance of a hybrid top-down/
bottom-up (or model-based/cue-based) approach to 3D shape 
recovery (see also ref. 22). We also consider a purely top-down 
analysis-by-synthesis approach that is identical except that image 
discrepancies are computed in terms of raw pixel deviations. The likeli-
hood is then simply

Pr(Iobs|Ihyp) ∝ exp (−‖‖Iobs − Ihyp‖‖1)

We refer to this alternative as the ‘Pixel Likelihood PbAS’ model, 
or ‘Pixel-PbAS’ for short.

Analysis: inference using Bayesian optimization. The posterior 
Pr(S, R∣Iobs) of equation (1) contains all information that our model 
extracts from an observed image Iobs, but computing this distribution 
is intractable. Standard simulation-based inference methods based on 
MCMC ensure eventual convergence to the full posterior but in prac-
tice spend too many iterations in low-probability regions20. We focus 
instead on the maximum a posterior setting: finding the best single 
scene interpretation rather than the full posterior over all possible 
latent variable settings. Following previous work in simulation-based 
inference23–25, we employ Bayesian optimization (or BayesOpt19); unlike 
gradient-based algorithms, BayesOpt allows us to optimize functions 
that include procedures, such as our scene renderer, which do not 
expose or do not support gradients. See Methods for an overview and 
details of BayesOpt applied in PbAS and Supplementary Fig. 1 for an 
illustration of the internals of this process.

Solving the object-under-cloth task using the model. Human partici-
pants see two unoccluded context objects (that is, test items) and one 
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{S, R} to
try next

Pr(R)

Pru(S)

D[fenc(input),
    fenc(prediction)]

fenc
    

Iterations

1 2 3

1 2 3

Fig. 3 | Overview of PbAS. a, Application of the PbAS model to solve the  
object-under-cloth task. Given an image triplet, two PbAS models are run in 
parallel; each execution takes as input a test item and the target item. On each 
iteration, the two executions of the model are compared to determine how well 
the target item is explained by each test candidate. b, Interpreting an input cloth-
covered image (red frame), with a context unoccluded object (u; blue frame) 
supplying a prior over object shape Pru(S). Bayesian optimization (BayesOpt) 
efficiently guides inference, improving shape (S) and rotation (R) hypotheses 
across iterations. S and R proposals initialize the cloth draping simulation, then 
are evaluated by computing the distance D between the current scene hypothesis 
(rendered to a hypothesis image) and the input in a suitable feature encoding 

space fenc. c, Visualization of three inference (b) trajectories over time. Rows are 
independent runs of PbAS each with input as in a and b (red frame) and show 
the cumulative best scene hypothesis at each iteration. Blocks show hypotheses 
visualized with (top; ‘Prediction’) and without (bottom; ‘Without cloth’) cloth 
occlusion. Model estimation accuracy improves with increasing iteration 
number, but some uncertainty remains as the model (like people) cannot in 
general perfectly identify the shape or pose of a draped object. d, Evolution of 
model accuracy averaged across multiple runs in the occluded task condition. 
Model predictions by iteration for 15 same-category ‘harder’ and 15 different-
category ‘easier’ trials.
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target object on each trial. Recall that, by its design, the PbAS model 
interprets a target (that is, cloth-draped or unoccluded depending on 
experiment condition) object in the context of an unoccluded object. 
Thus, to model a given trial, we form two pairs, each consisting of a 
context object (either the matching item or the distractor item) and 
the target object, and apply PbAS to each pair (Fig. 3a). Each PbAS 
run aims to explain the same input image, but with different shape 
hypotheses derived from either the matching object or the distractor 
object. At every iteration, we save the current best parameter estimates 
(that is, shape and rotation) and the log posterior score for that scene 
hypothesis. Using the odds ratio decision rule, we obtain the model’s 
best estimate of the underlying shape for each inference step.

We ran the PbAS model 32 times on each trial, for 200 itera-
tions each, and treated each of these runs as a simulated participant 
(although with finer temporal resolution). At each of the 200 itera-
tions, we averaged the binary decisions across runs to obtain mean 
accuracy predictions—that is, simulating the accuracy of participants’ 
average shape choices. In our analysis we compare the dynamics of 
model choice with human decisions sampled at three different time 
intervals, corresponding to three different presentation durations that 
varied across experimental conditions (see the ‘Inference dynamics 
explain human accuracy and response times’ section for comparisons 
of models and human behaviour). Figure 3d shows how the average 
model performance changes as a function of iteration for a subset of 
our stimuli.

Bottom-up models based on DCNNs. To help evaluate the PbAS model 
and its correspondence with human perception, we considered several 
well-studied bottom-up models as comparisons for human and model 
performance. Recent computer vision models based on DCNNs learn 
powerful visual feature hierarchies achieving state-of-the-art object 
recognition performance. These feature hierarchies are relatively 
robust to variation in pose and lighting, can predict certain aspects 
of variance in neural and behavioural data, and are considered the 
‘current best models of the primate visual stream’26. Moreover they 
are useful for visual tasks beyond object recognition; these features 
have been used for a number of other vision problems, such as object 
localization and pose estimation27, among others, with minor or no 
modification. In testing these pre-trained models, our goal is not to 
establish whether DCNNs, considered as a model class, can perform the 
object-under-cloth task. DCNNs are universal function approximators; 
with enough data, enough compute, and the right architecture and 
optimization procedure, they are probably able to learn to perform 
our visual-matching task. Instead, our goal is to assess whether the 
features learned from categorizing objects in natural scenes can suffice 
to perceive cloth-occluded shapes as well.

Because our synthesized stimuli and task design differ from those 
used for the pre-trained DCNNs, we also test the same networks after 
fine-tuning them using images similar to our experimental stimuli. We 
tested the following architectures, each pre-trained using ImageNet28: 
AlexNet7, ResNet-50 (ref. 29) and VGG16 (ref. 30). Each DCNN was 
fine-tuned separately for the cloth-occluded and unoccluded condi-
tions. The task was the same visual matching problem presented to 
humans: given an image containing two unoccluded test shapes and 
one target object (a ‘triplet’; objects sampled from a total of 50 shapes), 
determine which test shape corresponds to the target. We repeated this 
process 32 times; thus we fine-tuned 32 copies (to match the number 
of PbAS runs per trial) of each architecture for each occlusion condi-
tion. We report the average accuracy of these 32 fine-tuned networks. 
For dataset generation, fine-tuning and evaluation procedures, see 
Methods.

For both the pre-trained and fine-tuned conditions, we found that 
no architecture was more accurate than AlexNet (Supplementary Fig. 2).  
Therefore, we use both the pre-trained AlexNet and our fine-tuned 
variant in our comparisons of bottom-up models with behaviour.

Inference dynamics explain human accuracy and response 
times
To evaluate PbAS as a candidate model for human perception, we 
compared its predictions on the object-under-cloth task with two 
key behavioural measures: average accuracy and response time. We 
recruited human subjects and assigned them to either the occluded or 
unoccluded condition (Fig. 2a,b, left). Participants were also divided 
into three presentation time conditions: the two fixed (1 or 2 s) time 
conditions and the unlimited time condition, which presents stimuli 
until subjects respond. In total, the experiment consisted of 2 occlu-
sion × 3 presentation time = 6 conditions in a between-subjects design. 
We chose a between-subject design, rather than a within-subject design, 
primarily because an experiment that tested multiple conditions would 
require more time and focus from participants than is feasible, in our 
experience, for an online experiment. Nevertheless, we note that our 
design offered sufficient power for our statistical analyses; as shown 
in Supplementary Fig. 3, nearly all of our pairwise behavioural com-
parisons were statistically significant.

As is typical in modelling studies, we compared the average accu-
racy of PbAS and alternative models with that of humans. Because 
accuracy measures alone might simply favour models that are more 
performant, we also examined how PbAS ‘response times’—the number 
of inference iterations used per trial—might explain human response 
times on the same trials.

Explaining human accuracy across presentation times. We first 
established that behavioural performance is significantly affected by 
task setting. While participants performed well above chance across all 
occlusion and presentation time conditions, their performance varied 
with respect to these design parameters. Most obviously, human per-
formance was better in the unoccluded setting, t(72) = 6.868, P < 0.001. 
All statistical tests reported in this article are two-tailed, including both 
the parametric and nonparametric variants. With longer presenta-
tion time, average performance significantly improved (1 s versus 2 s 
t(51) = −3.187, P = 0.002; 2 s versus Unlimited t(52) = −3.049, P = 0.003, 
Supplementary Fig. 3a; for results broken down by occlusion condi-
tion, see Supplementary Fig. 3b) and response times increased (1 s 
versus 2 s t(51) = −5.616, P < 0.001; 2 s versus Unlimited t(52) = −4.121, 
P < 0.001, Supplementary Fig. 3c; for results broken down by occlu-
sion condition, see Supplementary Fig. 3d). We also note that we did 
not observe any learning effects throughout the experiment, with 
participants’ average performance remaining fairly constant across 
trials (Supplementary Fig. 6).

The design of our behavioural experiment offers a multifaceted 
view of human performance in terms of presentation time, trial diffi-
culty (defined as whether test items are of same or different category; 
Fig. 2) and occlusion condition. In Fig. 4a, we show average human 
accuracy levels for each presentation time, pooled with respect to 
the two difficulty types (‘different category’ versus ‘same category’) 
and two occlusion conditions (occluded versus unoccluded). Observ-
ers performed significantly above chance even in the most challeng-
ing setting with cloth occlusion, same-category distractors and the 
briefest presentation time (1 s). Note also that performance improved 
with longer presentation time in the same-category distractor trials 
where, unlike the easier different-category distractor case, perfor-
mance does not reach ceiling even with unlimited presentation time.  
We now ask whether PbAS and bottom-up models can explain these 
nuanced results.

We compared average human accuracy levels for each presenta-
tion time condition (collapsing over occlusion and difficulty) with PbAS 
accuracy at each model iteration. The comparison used the ℓ2 distance. 
We found that the longer the presentation time, the more model itera-
tions are needed to best match behaviour: the fit for 1-s data requires 
fewer iterations (48[41, 54], where [l, u] indicates lower/upper 95% con-
fidence intervals based on bootstrap resampling of participants) than 
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are needed for the 2-s condition (80[63, 83]), and even more iterations 
(110[102, 131]) are needed to match the unlimited time data (Fig. 4b). 
The performance of the PbAS model at the best-fitting iteration num-
bers for each presentation time closely matches their corresponding 

behavioural accuracies (compare Fig. 4a,c, which shows model perfor-
mance at iterations 50, 80 and 110 for simplicity; model accuracy levels 
at 48 and 50 iterations are essentially identical). In particular, the cor-
respondence between PbAS and behaviour (measured as the ℓ2 distance 
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Fig. 4 | PbAS explains how human accuracy increases with longer stimulus 
presentation time. a, Average behavioural accuracy for each presentation time, 
occlusion condition and difficulty (independent samples of participants for 
each combination of presentation time and occlusion condition: 1-s Unoccluded 
n = 29; 1-s Occluded n = 24; 2-s Unoccluded n = 30; 2-s Occluded n = 25; Unlimited 
Unoccluded n = 28; Unlimited Occluded n = 25). A trial is said to be hard if the 
distractor test item is of the same category as the target item, and easy otherwise. 
b, Divergence between model and human performance at each model iteration. 
Coloured lines show ℓ2 distance between PbAS model and human accuracy in 
indicated presentation time condition. Human accuracy at each increasing 
presentation time is best matched by model at correspondingly greater iteration 
(coloured triangles). c, Average accuracy of the PbAS model at the three iteration 
numbers chosen to be close to the best-matching iterations marked by coloured 
triangles in b. We show results for 50 rather than 48 iterations (see text). 
Evolution of PbAS accuracy levels over these snapshots closely matches human 
accuracy levels at the corresponding presentation times (compare a). d, Average 
accuracy of the bottom-up network (BU) and the fine-tuned (FT) variants; FT 
model reports ensemble average. Unlike humans and the PbAS model, in harder 

cloth-occluded trials with same-category distractors, the BU and FT models 
remain close to chance (dashed lines). e, Average accuracy of the ‘Pixel-PbAS’ 
model, a variant operating on pixels rather than intermediate perceptual 
features. Relative to the PbAS model, this model requires more iterations to reach 
human-level performance; more critically, it qualitatively misses a key aspect of 
behaviour by performing equally well across occlusion conditions, specifically 
in the harder same category trials (for the details of statistical comparisons, see 
text). Error bars in a,c,d (right plot) and e show standard deviation; significance 
in these panels is determined using two-tailed independent-sample t-tests. 
Samples in c,d (right plot) and e are independent runs of respective models 
(n = 32 in each case). f, Average of the bootstrapped ℓ2 distance between human 
accuracy (a) and models: PbAS, bottom-up network pre-trained (BU) and after 
fine-tuning (FT), and PbAS without image encoding (using pixels for likelihood 
computation; ‘Pixel-PbAS’). For the PbAS and Pixel-PbAS models, for each 
presentation time, we present the distances based on their corresponding 
best-matching iteration number. Error bars show 95% bootstrapped confidence 
intervals (n = 5,000 bootstrap samples); ***P < 0.001; *P < 0.05; NS, not significant 
(P > 0.05).
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between behavioural and model accuracy levels) is stronger than it is 
for any other model (Fig. 4f, P < 0.001 using direct bootstrap hypothesis 
testing, except PbAS versus FT in the 1-s condition; see below).

Unlike the PbAS model, the bottom-up features derived from 
pre-trained DCNNs failed to explain human accuracy levels, nor 
did they after fine-tuning these networks separately for each occlu-
sion condition (Fig. 4d,f). As expected, the performance of the 
pre-trained bottom-up network declined substantially under occlu-
sion, but it did so even for the easier different-category distractor trials  
(Fig. 4d, Bottom-up (BU)). For the harder cloth-draped, same-category 
trials, the performance of the bottom-up model reduced to chance  
(Fig. 4d, Bottom-up (BU)). Fine-tuning this network improved its over-
all performance, but most of this improvement manifested in the 
different-category trials and indeed its performance remained near 
chance in the harder cloth-occluded trials with same category dis-
tractors (Fig. 4d, Fine-tuned (FT)). These results are reflected in the 
correspondence between human and network accuracy. In all but one 
condition, the discrepancy between bottom-up and fine-tuned models, 
and human behaviour, is higher than it is for PbAS (Fig. 4f; P < 0.001, 
direct bootstrap hypothesis testing, for each pairwise comparison of 
PbAS and other models). In the 1-s condition, the fine-tuned model is 
statistically inseparable from PbAS (P = 0.055), but it decouples from 
behaviour in finer-grained trial-by-trial analysis, as we explain in the 
next section (see also Fig. 5 and Supplementary Figs. 4 and 5).

Overall, unlike PbAS, the discrepancy between human and net-
work accuracy levels increased with presentation time, suggesting the 
need for additional computations beyond the bottom-up processing 
implemented in these DCNN models (Fig. 4f; P < 0.001 for each pairwise 
comparisons of BU-1 s versus BU-2 s, BU-2 s versus BU-Unlimited, FT-1 s  
versus FT-2 s, and FT-2 s versus FT-Unlimited).

These results provide support for the role of top-down computa-
tions (the generative model) in the hybrid architecture embodied in 
PbAS: the DCNN feature hierarchies that alone cannot explain behav-
iour are useful when they guide inference (by defining the likelihood) 
in the generative model. Is this bottom-up component necessary to 
explain behaviour? We evaluated a model that removed the image 
encoding module. This ablation—referred to as the Pixel Likelihood 
PbAS (or ‘Pixel-PbAS’ for short)—computes likelihood in the pixel 

space, keeping everything else unchanged from PbAS. We found that 
this ablation fails to reproduce an important aspect of behaviour: 
unlike the PbAS model and human judgements, the Pixel-PbAS model 
performs equally well in the harder (that is, same category) occluded 
and unoccluded trials (Fig. 4e; humans: 1 s t(22) = 4.467, P < 0.001; 2 s 
t(23) = 5.324, P < 0.001; Unlimited t(23) = 4.712, P < 0.001; PbAS: 1 s 
t(30) = 7.45, P < 0.001; 2 s t(30) = 7.24, P < 0.001; Unlimited t(30) = 9.14, 
P < 0.001; Pixel-PbAS: 1 s t(30) = 2.47, P = 0.016; 2 s t(30) = 1.42, P = 0.161; 
Unlimited t(30) = 1.93, P = 0.058). Moreover, it takes longer to reach 
human level accuracy relative to PbAS, requiring about 30 more itera-
tions for each presentation time condition (Fig. 4e and Supplementary 
Fig. 7). Finally, this model does not match behaviour as well as PbAS; 
using its best-fitting iteration numbers, the distance to behaviour is 
greater than that of PbAS at each presentation time condition (Fig. 4f; 
P < 0.001 using direct bootstrap hypothesis testing). However, we note 
that, unlike the bottom-up models, the distance from the Pixel-PbAS 
model to behaviour is constant or decreases slightly across presenta-
tion time conditions, indicating that the iterative refinement of scene 
hypotheses is still crucial to explain how behavioural performance 
improves with longer exposure times. These results establish that both 
top-down and bottom-up components of the PbAS architecture are 
needed to account for behaviour. Relative to the bottom-up models, 
PbAS’s superior account of behaviour is not merely a result of its better 
task performance, but is instead due to its making similar perceptual 
judgements, and errors, as humans. The next two sections provide 
further evidence for these conclusions using fine-grained error and 
response time analyses.

Explaining trial-level human accuracy. Next, we evaluated the abil-
ity of the models to explain average human accuracy at the level of 
individual trials. In the unlimited time condition, we found that the 
trial-by-trial accuracy of the PbAS model at the best-fitting iteration 
(iteration 110, marked by the dark-blue triangle in Fig. 4b) correlated 
well with behaviour, and did so consistently in both occlusion con-
ditions (r = 0.55, P < 0.001 and r = 0.62, P < 0.001 in unoccluded and 
cloth-occluded conditions; Fig. 5a). In the unoccluded condition, PbAS 
better correlated with behaviour relative to the pre-trained bottom-up 
network features (P < 0.001, using bootstrap direct hypothesis testing), 
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PbAS, bottom-up network pre-trained (BU) and after fine-tuning (FT), and the 
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comparisons are made using direct bootstrap hypothesis testing based on a two-
tailed test threshold (***P < 0.001; NS, P = 0.632; all tests reported are two-tailed). 
b, The hardest, same-category trials reveal that only the PbAS model consistently 
correlates with behaviour in both the unoccluded and occluded conditions. The 
x-axis values are normalized to range between 0 and 1. Correlation coefficients 
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but fine-tuning was effective in closing the gap; PbAS and the fine-tuned 
model showed no difference (P = 0.31). However, in the occluded condi-
tion, the PbAS model better explained behaviour relative to both the 
pre-trained and fine-tuned alternatives (P < 0.001 for each comparison; 
Fig. 5a). PbAS also correlated with behaviour better than the Pixel-PbAS 
model in both the unoccluded and occluded conditions (P < 0.001;  
Fig. 5a; for qualitatively similar results in the other two presentation 
time conditions, see Supplementary Fig. 4) Despite the superior quan-
titative account of PbAS, we note that none of the models considered 
could explain all of the reproducible variance in the behavioural data. 
Split-half correlations across participants (Methods) in the unlimited 
presentation time condition were around r = 0.80, P < 0.001 for both 
occlusion conditions, significantly higher (P < 0.001) than the correla-
tion achieved by PbAS.

What underlies the PbAS model’s ability to consistently account 
for behavioural accuracy at the trial level across both occlusion condi-
tions? We hypothesize that both top-down generative knowledge and 
bottom-up feature encoding are crucial. To address this, we first notice 
that in the easier, different-category trials humans performance is at 
ceiling, especially in the unlimited time condition (see the ‘different 
category’ bars in Fig. 4a). There is therefore little variance to explain 
in these easier trials. Thus, we focus on the difficult same-category 
trials where there is appreciable variance in behavioural accuracy 
across trials. We find that in these difficult trials, when compared 
with the bottom-up models, only PbAS can account for behaviour 
in both occlusion conditions (Unoccluded: r = 0.44[0.36, 0.51]; 
Occluded: r = 0.44[0.33, 0.54]). In the regular, unoccluded condition, 
the fine-tuned model (and to some extent the pre-trained model) can 
explain some of these fine-grained behavioural patterns, however, 
these models, especially the fine-tuned model, decouple from behav-
iour under cloth occlusion (Fig. 5b; FT: Unoccluded: r = 0.46[0.37, 0.55]; 
Occluded: r = 0.02[ −0.07, 0.10]; BU: Unoccluded: r = 0.33[0.27, 0.39]; 
Occluded: r = 0.11[0.03, 0.19]). The Pixel-PbAS model also falls short 
of the performance of the full PbAS model in both occlusion condi-
tions (P < 0.001 using direct bootstrap hypothesis testing; Fig. 5b; for 
qualitatively similar results in the other two presentation time condi-
tions, see Supplementary Fig. 5), further demonstrating the necessity 
of both top-down generative knowledge and the bottom-up image 
embedding for successful prediction of behaviour. However, we note 
in these same-category trials, too, PbAS falls short of explaining the full 
extent of the reproducible variance in the data (split-half correlations in 
behaviour: r = 0.79, P < 0.001 and r = 0.71, P < 0.001 in the unoccluded 
and occluded conditions).

Explaining trial-level response times as iterative inference. Our 
analyses have so far focused on accuracy. Here we analyse human 
response times to ask whether the time course of inference in PbAS can 

explain the evolution of observers’ perceptual decision-making at the 
level of individual trials—how long they decide to view a stimulus before 
making their choice. Thus, in the unlimited time condition, we compare 
the number of iterations required for the model to arrive at a decision 
on a given trial (in a given experimental condition) with the average 
human response time for that trial. To do so, we devised a simple deci-
sion rule in the model that applies to individual trials. At each model 
iteration, this decision rule compares the average model accuracy to a 
criterion set to the average participant accuracy within the trial’s condi-
tion. We record the earliest iteration that PbAS performance exceeds 
that criterion (or the maximum iteration number, 200, otherwise) and 
take it as a predictor for that trial’s average response time. This is akin to 
a drift-diffusion model31 where evidence accumulation naturally arises 
from the iterative refinement of scene hypotheses in the PbAS model 
(notice that, unlike standard drift diffusion models, the drift rate and 
other parameters arise from model inference; no parameters are fit 
save the criterion). The results are response time predictions for each 
trial of each condition in the experiment.

Despite the simplicity of this decision rule, we found a remarkable 
correspondence between the number of iterations needed to solve a 
trial in PbAS and the time humans took to respond on that trial (Fig. 6);  
the relationship holds for both occlusion conditions (Unoccluded: 
r = 0.67[0.52, 0.77]; Occluded: r = 0.71[0.67, 0.73]). No parameters 
(beyond taking human performance as criterion for each condition) 
were fit to explain response times. Because the Pixel-PbAS model 
also performs iterative inference, we can test its ability to explain 
response time data as we did with PbAS. We found that PbAS gave a 
better account of response time data than the ablated model in each 
occlusion condition (P < 0.001 using bootstrap hypothesis testing; 
Fig. 6). We also explored measures of ‘amount of processing’ in the 
bottom-up networks (the pre-trained and fine-tuned models) as pre-
dictors of human response times, finding that PbAS better explains 
behaviour both qualitatively and quantitatively, in each occlusion 
condition (Supplementary Fig. 9).

Discussion
We presented evidence for the use of generative model computations 
in visual perception, in the form of physics-based mental simulations. 
Our behavioural results as well as recent related literature2–4 raise a 
fundamental question: How is it possible to perceive the shape of an 
object when none of the classic visual cues to shape are visible? We 
proposed that the mind and brain exploit internal representations 
of the physical processes which form scenes and images. Our PbAS 
model incorporates knowledge of scene structure and dynamics to 
explain, through online optimization and physics simulation, why a 
cloth-covered object appears the way it does—as the result of dropping 
a cloth on an inferred shape in an inferred pose. We tested PbAS in a 
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shape matching task that required subjects to match a cloth-draped 
object with its unoccluded (and randomly rotated) counterpart, in 
the presence of a distractor. The PbAS model predicts not only overall 
human accuracy in this visual matching task, but also how performance 
improves with longer stimulus presentation times. Crucially, the num-
ber of inference steps needed to reach a behaviourally determined 
performance threshold predicts, on a trial-by-trial basis, average par-
ticipant response times.

Our work adds to the growing literature showing that perception 
in the brain can be understood as efficient approximate inference in 
generative models, or analysis-by-synthesis9,13,32,33. Past studies have 
examined some predictions of this theory, but have not provided 
quantitative evidence that such rich generative models—incorporat-
ing shape, object interaction dynamics and sensory features—are used 
online during perception. PbAS also differs from previously considered 
generative models in its focus on scene elements and causal processes, 
which when composed allow it to interpret images which are outside 
typical perceptual experience. In this way, our work identifies the 
flexible use of ad hoc dynamic scene properties in perception, such as 
cloth mechanics, that only indirectly influence image formation and 
are not usually seen as cues to 3D shape. Perceiving shape through cloth 
occlusion highlights how such ‘nuisance’ variables can play a central 
role in 3D object perception. Our work argues that the compositional 
use of generative models provides the best way of understanding how 
these factors influence perception.

Bottom-up models based on DCNNs performed poorly both in the 
object-under-cloth task and in mimicking human behaviour. A DCNN 
that has been fine-tuned on thousands of images of cloth-occluded 
objects produces behaviour with roughly similar average accuracy as 
humans in our briefest presentation conditions (1 s), but unlike the PbAS 
model fails to explain how performance improves with time and does 
not correlate at all with trial-by-trial accuracy in the most challenging 
conditions (occluded with cloth and same-category distractors, for all 
presentation conditions tested). DCNNs, as a model class, should in 
principle be able to learn any mapping from inputs to outputs, but our 
fine-tuning results show that, in practice, the data requirements can be 
substantial (and probably exceed human experience) and the best results 
far from human-like. Given the broader context of the many atypical, chal-
lenging viewing conditions that the visual system may encounter, these 
findings underscore the importance of generalization and robustness, 
ongoing challenges for DCNNs, and illustrate how top-down knowledge 
can enable perception in difficult novel contexts. Bottom-up models 
do, however, play an important role in our framework; relative to the 
ablated Pixel-PbAS model, the hybrid architecture implemented in PbAS 
demonstrates that powerful feature hierarchies can usefully facilitate 
or guide inference in generative models. This perspective is compatible 
with much research on ‘core’ object recognition showing the explanatory 
power of bottom-up models34,35. Future work should also evaluate con-
tinuing developments in DCNNs, trained using alternative loss functions, 
architectures or datasets, including, for example, contrastive objec-
tives36, vision-language models37 and non-convolutional architectures38, 
which may show improved generalization to difficult perceptual tasks 
(as explored in refs. 39,40). This is especially relevant for brief exposure 
times (for example, 1 s, Fig. 4d,f), where the fine-tuned model shows 
some initial alignment with behaviour in terms of average accuracy levels.

The PbAS model suggests that perception of cloth-covered objects 
in the brain relies on a combination of feedforward, feedback and 
recurrent computation. We believe that this is valuable as, relative to 
the case of feedforward processing, there is little evidence to constrain 
or generate hypotheses regarding the role of feedback and recurrent 
computation in visual scene analysis41. PbAS suggests a new computa-
tional goal for feedback and recurrence in the brain, which is in some 
ways related to pattern theory as expressed in ref. 10: such processing 
might implement the progressive unfolding of one or a number of 
physical simulations. It is likely that these forms of neural computation 

implement multiple computational goals needed for such diverse func-
tions as attention, learning and perception41. The hypothesis suggested 
by PbAS—internal simulations of physical processes—is not exclusive of 
the others and future work should explore their combination.

The present implementation of PbAS accounts for behaviour in the 
specific matching task we studied here (Figs. 1a,b and 2). Future work 
should exploit its modular architecture to address other experimen-
tal paradigms and perceptual problems. For example, from an image 
of a single draped object (without a comparison unoccluded object), 
humans can often infer its category, approximate pose and partial shape  
(Fig. 1c–e). While evaluating PbAS in this more difficult scenario is 
beyond the scope of the present paper, the framework readily extends 
to this setting; for a demonstration from a proof-of-concept implementa-
tion, see Fig. 7. Another limitation of the current study is our treatment of 
scene parameters such as illumination and cloth material. For simplicity, 
we held these constant across all experimental stimuli, and the same 
parameters were incorporated into PbAS and Pixel-PbAS and used to 
generate training data for the neural network models. A more elaborated 
PbAS would attempt to estimate these scene properties as well (our use 
of relatively invariant feature embeddings, however, probably attenu-
ates the effects of changes in environmental lighting). Varying these 
parameters when generating stimuli could also reveal how cloth mate-
rial affects shape perception, an interesting direction for future work.

There is also room for improvement in matching human behav-
iour in the present matching task; even our best model, PbAS, falls 
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Fig. 7 | Seeing the shape of a single cloth-draped object, without the aid of 
unoccluded candidates (cf. Fig. 2a,b). By expanding its shape hypothesis 
space to contain a large set of category-specific objects (as opposed to the four 
nearest neighbours of the available context object as in our main model) and 
removing the unoccluded inference module, PbAS can obtain plausible estimates 
of 3D pose and geometry. Rows show (from left) input image containing target 
cloth-covered object and four inferred shape/pose hypotheses under this 
modified PbAS model, ordered from high to low posterior probability.
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short of explaining all of the reproducible variance in people’s judge-
ments. Considering the models presented here, we find that the more 
performant a model, the better it correlates with human accuracy (Sup-
plementary Fig. 8), suggesting that building performance-equated 
alternatives (for example, Pixel-PbAS) will help further refine the 
algorithmic basis of how physics-based mental simulations and shape 
inference are implemented in the mind and brain. PbAS relies on image 
features for approximate inference; because it is unlikely that a gen-
erative model can match sensory inputs exactly, good performance 
requires image representations that ignore irrelevant fine-scale varia-
tion but do covary with the visible 3D shape. To this end, we considered 
bottom-up features based on DCNNs, which are useful (as manifested 
in the comparisons of the PbAS and Pixel-PbAS models) but neverthe-
less biased towards local image patterns42. Future research should 
consider geometrically (for example, curvature regions43), topo-
logically (for example, critical contours44,45) and physically informed 
feature layers (for example, physical contact3). In principle, models 
embedding such feature layers would not require an unrealistically 
accurate model of physics or graphics because these features, learned 
or designed to be robust to irrelevant image variation, might tolerate 
model mismatch.

Our results suggest that shape perception under cloth draping 
involves mental operations beyond the rapid, bottom-up processing 
believed characteristic of traditional object recognition46. To what 
extent are the computations hypothesized by PbAS—3D shape infer-
ence, mental rotation or mental simulations of physical and image 
formation processes—also engaged in rapid, automatic visual process-
ing? How do they relate to other cognitive mechanisms supporting 
dynamic processing such as visual routines47 and mental imagery48?

Recent psychophysical work suggests that these computations 
might be implemented in the visual system as part of spontaneous 
processing of sensory data. Ref. 5 studied cloth-covered object percep-
tion across a battery of visual tasks, finding evidence that scenes are 
rapidly and automatically parsed as the appropriate physical causes. 
In addition to behavioural probes, cognitive neuroscience can address 
where in the brain the computations specified by the PbAS model might 
be implemented (for a recent review of Bayesian causal models and 
inference in the brain, see ref. 49). For example, functional magnetic 
resonance imaging studies50 have identified brain regions supporting 
intuitive physical judgements in a dorsal frontoparietal network; it is of 
significant interest to answer whether the same or similar brain regions 
are also recruited during the perception of cloth-draped objects.

Our work also raises questions about the origins of the generative 
models implemented in PbAS, including the prior over 3D shapes and 
the simulation of physical processes. A plausible hypothesis is that 
such generative models derive from a combination of innate capaci-
ties and experience-driven learning. Attempts to learn expressive 
distributions of shapes51 and complex object dynamics52,53, starting 
from certain helpful inductive biases implemented in neural network 
architectures or training objectives, suggest that such a hypothesis can 
be concretely and productively implemented and empirically evaluated 
(for examples, see refs. 54,55).

The PbAS framework discussed and supported here may play 
a broader role in visual processing beyond our cloth-draped object 
setting, unifying competencies beyond traditional shape and object 
perception. A common computational engine may therefore sup-
port perception of the dynamical properties of objects, such as the 
relative masses of colliding rigid bodies or single objects reacting 
to the application of external forces56–58; the stiffness of deformable 
objects undergoing natural transformations59–61; viscosity and flow 
of liquids62–64; and in general the perception of the physical (that is, 
non-intentional) causal history of an object65–67. In each of these cases, 
it is at least plausible that the brain uses generative models to simulate 
the physical processes that could have produced the observed scene, 
and compare the results of these simulations to the sensory input.  

A better understanding of how the brain supports these abilities could 
also lead to more robust, and more human-like, machine vision systems.

Methods
This study complies with all relevant ethical regulations and was 
approved by the Massachusetts Institute of Technology Institutional 
Review Board (the Committee on the Use of Humans as Experimental 
Subjects).

Generative model
Cloth simulations. We used the FLeX engine, a particle-based physics 
engine, for cloth physics simulation17. Simulation parameters as well 
as the mechanical-material properties of the cloth were chosen so as 
to achieve fast, stable simulation of natural-looking, cotton-like cloth. 
Simulation parameters were as follows: iterations, 4; subiterations, 
19; particle radius, 0.0078; collision distance, 0.0078; shape collision 
margin, 0.00078; particle collision margin, 0.0; relaxation mode, 
default; relaxation factor, 1.3; drag, 0.09; damping, 0.0; dissipation, 
0.0; restitution, 0.0. The mechanical-material properties of the cloth 
were as follows: strength stiffness, 0.8; bend stiffness, 0.64; shear stiff-
ness, 0.4; particle mass, 1.0; static friction, 0.18; dynamic friction, 1.1.

To increase simulation efficiency, we simplified the geometry 
of the ShapeNet meshes using Blender68. First, we corrected the sur-
face normals on each mesh by ensuring that they were consistent and 
pointed outwards. Second, we used Blender’s ‘Solidify’ mesh modifier 
with the thickness parameter set to −0.0001. Finally, we merged faces 
that were adjacent and approximately coplanar (with surface normals 
differing by less than 0.02 rad ≈ 1.15°).

We initialized simulations by placing a square cloth (represented 
computationally with 210 × 210 particles) just above the geometric 
centre of the rotated object to be draped. We then ran the simulation 
for 150 steps, sufficient to fully drape all objects we tested. Each cloth 
simulation took between 3 s and 40 s on a NVIDIA 2080TI GPU, on the 
order of 1,000 times faster than alternative implementations using cen-
tral processing unit-based cloth simulation and unsimplified meshes.

Image rendering. The scene was lit to minimize shadows. We placed 14 
point lights with energy 0.5 on a sphere with radius 1.22 (object radius 
normalized to 1), with lights distributed approximately equidistant 
using the Fibonacci sphere algorithm. We rendered these scenes to 
224 × 224 images using Blender’s internal renderer.

To equate the texture appearance of the draped and unoccluded 
images, we replaced the optical materials associated with the original 
ShapeNet meshes with a diffuse material (diffuse colour 0.75 in each 
RGB channel, diffuse intensity 0.75 and specular intensity 0.07). We 
used a very similar material to render draped cloths (diffuse colour 
0.8 in each RGB channel, diffuse intensity 0.8 and specular intensity 
0.05). We reasoned that equating the texture appearance in this way 
would aid the bottom-up neural network models in emphasizing shape 
over texture69.

Approximating shape distance. Given two shapes from ShapeNet Si 
and Sj, we define a shape distance metric by (1) rendering each object in 
a standard canonical pose, (2) passing each image through a pre-trained 
AlexNet7 and extracting feature activations at the first fully connected 
layer (that is, applying fenc as for pseudo-likelihood evaluation during 
inference) and (3) evaluating the ℓ1 distance between the feature activa-
tions for each shape. The resulting measure is similar to that used when 
calculating the pseudo-likelihood.

Shape prior. Given an unoccluded context object s0, we modelled the 
observer’s shape uncertainty Pru(S) as a categorical distribution over 
the K = 4 shapes nearest to s0. Let dsk  be the weight of the kth closest 
shape sk to s0; then Pru(S = sk) ∝ exp(−dsk ) with 1 ≤ k ≤ K. The Shapenet 
database forms a sparse approximation to the space of all object 
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shapes, and we found that the distance between an object and its closest 
neighbours could vary wildly; one reason is that some object classes 
have many more exemplars than others. Therefore, a prior defined 
solely using shape distance showed high variance across trials and was 
unsuitable for our purposes (for example, it induces arbitrary bias 
towards either the distracting or matching object from trial to trial). 
The unnormalized weights for each nearest shape were instead 
assigned on the basis of the rank order of their distance to the context 
object, starting at ds1 = 750 and increasing at increments of 75 so that 
dsk = 750 + (k − 1)75. The scale of these weights was chosen so that the 
relative contributions of the prior and likelihood were comparable.

Inference using Bayesian optimization
In comparison with traditional inference schemes based on 
random-walk MCMC20, Bayesian optimization provides a more guided 
or ‘active’ approach to inference, where the next scene hypothesis to 
evaluate the posterior on is informed by all of the previous evalua-
tions of the posterior. In adopting Bayesian optimization, we forego 
full posterior estimation (which MCMC can provide in principle) in 
favour of a good point maximum a posteriori estimate. This choice 
is further motivated by the computational cost of cloth simulation, 
which is responsible for nearly all of the work our model must do. Bayes-
Opt requires many fewer iterations, and therefore cloth simulations, 
than random-walk MCMC. It trades expensive overhead (compared 
with other methods) in choosing search candidates for greater search 
efficiency19.

Following ref. 24, we sought to learn a function from latent scene 
variables (that is, shape and rotation) to their (unnormalized) log pos-
terior scores. By specifying a tractable Gaussian process (GP) prior over 
functions and conditioning on all available data, BayesOpt yields an 
online strategy for adaptively choosing parameter settings to evaluate 
and prescribes how the results update the GP posterior. The uncertainty 
in the GP approximation of the log posterior score decreases as the 
number of inference iterations increases (that is, as more evaluations 
of the posterior are observed). This probabilistic approximation is com-
putationally cheap to evaluate and has support over the entire range of 
scene hypotheses (that is, can be evaluated for any scene hypothesis 
including those that are previously not evaluated).

BayesOpt requires specification of the GP kernel, which encodes 
prior assumptions about, for example, the smoothness of functions70, 
and an acquisition function that selects the next hypothesis given 
the results of all previous evaluations. In our work, we used a Matérn 
kernel with ν = 1.5 (the Matérn 3/2 kernel) and automatic relevance 
determination70 to learn a probabilistic mapping from latent scene 
hypothesis onto posterior scores; and we use the expected improve-
ment (EI) as our acquisition function, which favours scene hypoth-
eses that are expected to most improve the posterior score. Each 
iteration of BayesOpt consists of (1) updating the estimated regres-
sion function (from scene hypotheses to posterior scores) and (2) 
optimizing the acquisition function to determine which scene hypoth-
esis to evaluate in the next iteration. We next describe each of these  
two components.

Scene hypotheses are coded specially for BayesOpt. We rep-
resent rotations using normalized Euler angles R = {Rx, Ry, Rz}, with 
each orthogonal axis taking values in [0, 1] and together spanning 
the half-sphere of rotations. The shape variable is discrete, which we 
transform to a continuous encoding using vector quantization. We map 
the interval [0, 0.25) to shape hypothesis (that is, nearest neighbour) 
1; [0.25, 0.50) maps to the next nearest neighbour, shape 2, and so on 
up to shape 4. The GP therefore learns a regression function from a 
four-dimensional input (three numbers for rotation, one for shape) 
to a scalar, the log posterior score.

With this GP approximation at hand, we define an ‘acquisition func-
tion’ that uses the current GP state to select the most promising scene 
hypothesis to try in the next iteration j + 1, (S(j+1), R(j+1)). Various active  

sampling (or learning) heuristics are proposed in the literature (see, for 
example, refs. 19,23,24). We adopt the EI acquisition function19, which 
chooses the scene hypothesis that is expected to most improve the 
current posterior score, given all of the previous posterior evaluations. 
At each iteration j of our model, the inference procedure evaluates a 
scene hypothesis chosen to optimize the EI acquisition function. EI 
uses a parameter, denoted ϵ (set to 330 in our simulations), to trade 
off between how much to weigh the predicted posterior score ver-
sus the uncertainty around that prediction (notice that the GP-based 
probabilistic regression provides both the predicted mean posterior 
score and variance around that prediction for the entire range of scene 
hypotheses). To find the scene hypothesis that optimizes EI, we gener-
ate 100,000 random scene hypotheses and use the highest scoring to 
initialize further local search (using L-BFGS-B). This procedure yields 
the scene hypothesis (Sj, Rj) to be evaluated in the next iteration of 
the model. We evaluate the posterior at this scene hypothesis using 
equation (1).

We implemented our inference scheme using the BayesOpt71 and 
GPy72 packages.

Bottom-up models
We tested three DCNN architectures: AlexNet7, ResNet50 (ref. 29) and 
VGG16 (ref. 30). These models provide powerful feature hierarchies that 
are learned as a result of training to classify images from the large-scale 
real-world ImageNet28 dataset.

Imagesets for fine-tuning. Imagesets for fine-tuning were derived 
from the 5 shapes/category × 10 categories = 50 object shapes. These 
are the identical set of objects as those underlying the experimental 
training trials used to familiarize human participants with the task. 
We note that in our behavioural experiments we did not provide feed-
back during the training phase and indeed did not find any evidence 
of learning in our behavioural data (Supplementary Fig. 6). We used 8 
imagesets per occlusion condition, with 500 unique trials in each set 
giving 500 × 8 = 4,000 image triplets. We evaluated how the amount 
of data used for fine-tuning influenced performance, finding that 
performance plateaued at 8 imagesets, compared with alternative 
groups of 1, 2, 8, 18, 28 and 38 imagesets. For each triplet, we sampled 
two objects and randomly rotated, draped and rendered them using 
our stimulus generation pipeline. We reserved two imagesets for test 
and the remaining were used for training. To minimize bias, a set of 
8 imagesets was sampled from a larger pool of 54 at the beginning 
of each fine-tuning procedure. We fine-tuned each model 32 times 
for each occlusion condition and report accuracy averaged over the 
condition-specific replicas.

Modifying network architectures for fine-tuning. To fine-tune 
AlexNet and VGGG16, we removed their top classification layer and 
replaced it with a linear fully connected layer of size 120. We trained 
the added linear layer of size 120 from scratch and also fine-tuned 
the weights of the layer preceding it with the same learning rate (this 
fine-tuned layer would be the first fully connected layer in Alexnet).

Unlike AlexNet and VGG16, the ResNet-50 model does not contain 
multiple final fully connected layers; thus, we used a modified approach 
to fine-tune it. We replaced both its top classification layer as well as the 
preceding average pooling layer with a convolutional layer with kernel 
size 2, stride 2, and dilation 2, without zero-padding. This convolutional 
layer takes as input 2,048 feature maps (the number of output feature 
maps in the fourth residual block of the ResNet-50 model) each with 
dimensionality 7 × 7 and outputs 300 feature maps (each with dimen-
sionality 3 × 3). The ReLU activation function is applied to the flattened 
outputs of this convolutional layer, which is followed by a single linear 
fully connected layer of size 120. We trained the weights of the new 
convolutional layer as well as the fully connected layer from scratch, 
while keeping all other weights in the network unchanged.
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Details of the training procedure. To adapt the networks to our 
visual matching task, we used metric learning with a triplet margin 
loss73. The goal is to adapt the network’s representational space so that  
distance in that space reflects the similarity structure of our stimuli. 
Concretely, the distance between an ‘anchor’ image and a ‘positive 
example’ should be smaller than the distance between the anchor 
and ‘negative example’. A training triplet has the same structure as our 
behavioural match-to-sample task setup: anchor corresponds to the 
target item; positive example corresponds to the ground-truth match-
ing test item; and the negative example corresponds to the distractor 
test item (remember that the training datasets are crafted differently 
for each occlusion condition and different networks are trained for 
each of these occlusion conditions). We fine-tuned each architecture 
for a total of 200 epochs and used a held-out test set to make sure the 
models did not overfit over the course of training.

We set batch size to 8 and set the triplet loss margin to 2.0. We used 
the ADAM optimizer74 with ASMGrad75 using the following optimization 
parameters. We set β1 to 0.9, β2 to 0.999, learning rate to 1.2 × 10−6 and ℓ2 
weight decay to 1.8 × 10−3 at the beginning of training. In an attempt to 
optimize the performance of the bottom-up networks, we explored a 
range of custom learning rate schedules as well as regularization meth-
ods. During training, we scheduled the learning rate as the following. 
The learning rate is multiplied by 1.2 from epoch 1 to epoch 12. From 
epoch 13 to epoch 161, the learning rate is annealed by multiplying it 
with 0.985, after which it was kept constant until epoch 200. In addition, 
to avoid overfitting, we employ regularization using a weight decay 
strategy and data augmentation. From epoch 13 to 161, we multiply the 
weight decay parameter by 1.04 and 1.03 in fine-tuning the occluded 
and unoccluded task conditions, respectively. We observed that, with-
out this scheduled weight decay, models essentially memorized the 
training image set, giving rise to a substantial discrepancy between 
training and test performance. As a form of data augmentation,  
during training, we randomly perturb each image by adding white 
noise (variance set to 8.3 × 10−3) with probability 0.3 (the added noise 
was restricted to the foreground pixels). All pixel values were truncated 
to ensure that their values lie between 0 and 1.

Evaluation of bottom-up models on the object-under-cloth task. 
The accuracy of the pre-trained bottom-up model on a given trial was 
calculated using the following procedure. Recall that each trial in the 
object-under-cloth task consists of three images: the target item, the 
matching test item, and the distractor test item. We compute a feature 
embedding of each of these three images from the first fully connected 
layer of the network. We define a correct answer (accuracy of 1 for this 
trial) from the network if the correlation between the embeddings of 
the target item and the matching test item (denoted corrm) is greater 
than the correlation between the embeddings of the target item and 
the distractor test item (denoted corrd). Otherwise, the network got 
the trial wrong (accuracy 0). The accuracy levels of the pre-trained 
bottom-up model underlying Fig. 4d,f are calculated in this way.

In Fig. 5 where we require a continuous covariate per trial from each 
model (as opposed to a binary accuracy label), we use Luce’s choice rule 
(that is, softmax) to transform the above mentioned correlation values 
to a continuous score: corrm/(corrm + corrd). Notice that the model 
predictions in Fig. 5b are normalized to the range of [0, 1] for all models.

The trial-level accuracy of the fine-tuned model is calculated in 
a manner similar to the PbAS model. For a given trial and a fine-tuned 
network, we select the test item that is closer to the target item as the 
network’s guess and report the fraction of correct guesses (that is, the 
closest test item was the matching test item) across the ensemble of 32 
independently fine-tuned networks.

Behavioural methods
Participants. A total of 174 participants were recruited from  
Amazon’s crowdsourcing platform Mechanical Turk. All participants 

self-confirmed to be at least at the age of 18 years old or older, and all 
provided informed consent before the beginning of the study. The 
experiment took about 20 min to complete. Each participant was paid 
US$1.50. A total of 12 subjects were excluded due to performing at or 
below chance performance (1 in Unoccluded-1 s; 4 in Occluded-1 s;  
3 in Occluded-2 s; and 4 in Occluded-Unlimited). Approval for our 
behavioural study was obtained from the Massachusetts Institute of 
Technology Institutional Review Board (the Committee on the Use of 
Humans as Experimental Subjects), and we obtained each participant’s 
informed consent before any experimental session.

Stimuli and procedure. We used 240 unique ShapeNet meshes from 
10 object categories to create the 120 match-to-sample shape pairs 
in our task. We selected 24 objects from each category and allocated 
them evenly between the same-category (target and distractor from 
same object category) and different-category conditions, pairing 
each shape with another from the same category or a different cat-
egory as appropriate. Pairings were sampled randomly without 
replacement. We thus obtained six same-category and six different- 
category pairs for each object category, with no duplicate shapes  
across trials.

We designed a visual matching experiment based on the 
object-under-cloth task. The experiment assigned participants to 
either the occluded or unoccluded conditions as well as one of three 
conditions varying presentation time lengths, for a between-subject 
design with 2 occlusion × 3 presentation time = 6 conditions. In the  
1- and 2-s conditions, the target and test items were displayed for the 
indicated period of time and the unlimited time condition let par-
ticipants view the items for as long as they wished, that is until their 
response. Images appeared and disappeared simultaneously.

The spatial organization of the display differed slightly by occlu-
sion condition. In the unoccluded condition, the two test images were 
placed side by side, below the target item; for the occluded condition, 
the test images were placed side by side but above the target.

Participants completed 10 practice trials before moving on to 
the 120 experimental trials. Participants were provided with running 
feedback, seeing their average task performance at every fifth trial 
throughout the experiment except during the practice block (the 
performance feedback calculation excluded practice trial accuracy).

Split-half correlations. To estimate the data noise ceiling, we used 
bootstrapped split-half correlations. We sampled 1,000 random splits 
of our participants in each occlusion condition (only considering the 
unlimited presentation time condition), each split dividing the partici-
pants into two groups of equal size (participants were sampled without 
replacement for each partition). For a single division (one random split) 
of participants, we computed the average accuracy of each split-half 
on each trial, then correlated the group accuracies across all trials (in 
essence, we used the responses of one split of participants to model 
the responses of the other half). We did the same for each of the 1,000  
random splits, yielding 1,000 bootstrap estimates of the behavioural 
noise ceiling and allowing us to assess their average value and spread. 
But because this procedure effectively halved our participant number, 
our split-half correlations probably underestimate the true noise ceiling.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
Our behavioural data are publicly available at https://github.com/
CNCLgithub/PbAS-model-human-comparisons. The experimental stim-
uli underlying the object-under-cloth task are publicly available at https://
github.com/CNCLgithub/intuitive-physics-3d-shape-perception- 
stimuli.
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Code availability
Code implementing the PbAS model, scripts for replicating model 
simulations, and a container for full reproducibility are publicly avail-
able at https://github.com/CNCLgithub/PbAS. Our custom Python 
scripts for data analysis are publicly available at https://github.com/
CNCLgithub/PbAS-model-human-comparisons.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection We used custom javascript code and the psiturk package to collect behavioral data. 

Data analysis We performed all analysis using custom scripts in Python v3.6. Our analysis scripts are publicly available at https://github.com/CNCLgithub/
PbAS-model-human-comparisons.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Our behavioral data is publicly available at https://github.com/CNCLgithub/PbAS-model-human-comparisons. The experimental stimuli (images) underlying the 
object-under-cloth task are publicly available at https://github.com/CNCLgithub/intuitive-physics-3d-shape-perception-stimuli. The stimuli are generated using 
custom Python scripts and Blender computer graphics package. 
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Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender We did not collect information on sex and gender as we did not believe our hypothesis pertained to any sex- and gender-
based differences according to available literature. 

Reporting on race, ethnicity, or 
other socially relevant 
groupings

We did not collect information on race, ethnicity, or other socially relevant grouping as we did not believe our hypothesis 
pertained to these variables according to available literature.

Population characteristics Participants, who self-confirmed being at least at the age of 18, were randomly drawn from the user base of a crowdsourcing 
platform. 

Recruitment Participants were recruited using an online crowdsourcing platform in a randomized manner (as offered by the platform). We 
acknowledge that this introduces a selection bias, including the portion of the population with access to a computer and 
internet connection. 

Ethics oversight Institutional Review Board at Massachusetts Institute of Technology

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description A behavioral experiment with quantitative psychophysics and computational modeling. 

Research sample Participants, who are self-confirmed to be at least 18 years or older, are sampled from the user base of Mechanical Turk platform. 
Information on sex was not collected. This sample is fairly representative given the goals of our study (basic mechanisms of visual 
perception), but we acknowledge that it is biased toward western cultures and selects people with access to computers and internet. 

Sampling strategy Participants were randomly assigned from the Mechanical Turk platform. We chose our sample size based on previous studies using 
similar methodology (computational vision/psychophysics).

Data collection All data collection occurred online using a custom javascript-based web interface. Participants, all of whom were outside of the lab, 
interacted with that web interface using their browsers and responded to visual stimuli by pressing keys on their keyboards. We 
recorded their key presses and response times. The researchers did not accompany participants.  Researchers were unaware of the 
conditions the participants were assigned to, and had no influence on their behavior or performance because all instructions and 
stimuli were presented automatically and remotely. 

Timing 3/2019-6/2019

Data exclusions A total of 12 subjects were excluded due to performing at or below chance performance (1 in Unoccluded-1sec; 4 in Occluded 1-sec; 
3 in Occluded-2secs; and 4 in Occluded-Unlimited conditions). This criterion was pre-established. 

Non-participation A total of 202 participants visited or started the task but did not finish it. Typical reasons include generic connectivity issues such as 
poor internet connection. 

Randomization Participants were randomly assigned to conditions. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems
n/a Involved in the study
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Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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