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Abstract
Much like recurring cell types and circuit motifs, a basis
set of functional primitives implemented in stereotyped
neural dynamics can, in principle, be used to accomplish
complex computation in the brain. Existing work using
multitask-trained deep neural networks has established
the emergence of functional modules in otherwise ho-
mogeneous networks. However, these approaches only
allow for indirect exploration of the space of functional
primitives due to the entanglement of training objec-
tives, datasets, and architectures. Here, we take a direct,
hypothesis-driven approach: inspired by classic work in
computational neuroscience, we explore the basic build-
ing blocks of digital circuit functions, including oscilla-
tors, lag operators, and set-reset latches, as the basis set
of functional primitives in the brain. Our approach is en-
abled by a new way of utilizing neural network compu-
tation. Instead of training, we program the weights and
connectivity of RNNs to compute symbolically-specified
functions. Using a standard multi-task learning battery,
we show that these “intrinsic function RNNs” can sup-
port cognitive flexibility.
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Introduction
Neuroscience explores cell types and local circuit motifs, re-
vealing that similar patterns recur across the cortex (Harris
& Shepherd, 2015). In much the same way, and likely by
building on this underlying organization, it is plausible that
a set of reusable functional primitives implement complex
computation in the brain, including learning, memory, and
other aspects of cognition. Indeed, stereotyped neural dy-
namics, such as sequential activity and oscillations, can sup-
port diverse functions from decision-making and navigation to
the generation of rhythmic behaviors (Harvey, Coen, & Tank,
2012; Marder & Calabrese, 1996). How, in formal engineering
terms, can we explore such a basis set of intrinsic functions in
the brain?

One approach is based on task-optimized deep neural net-
works (DNNs). Recent work using multitask-trained DNNs
has shown the emergence of functional modules in architec-
tures built from otherwise uniform units (e.g., Yang, Joglekar,
Song, Newsome, and Wang (2019)). Despite the insights it
provides, this approach allows only for an indirect way of ex-
ploring what might be the space of functional primitives im-
plemented in neurobiology. The functional modules in a task-
optimized DNN fall from an entanglement of task objectives,
datasets, and architectures through training. Moreover, re-
sulting functional modules often need reverse-engineering for
how they may contribute to computation (Yang et al., 2019;
Orhan & Ma, 2019). Finally, the reusability of these functional
modules is limited (Márton, Gagnon, Lajoie, & Rajan, 2021);
there is no principled abstraction for reassembling these mod-
ules for de novo tasks.

Figure 1: A basis set of intrinsic functions – based on building
blocks in electronics – to support learning and memory.

Inspired by classic work in computational neuroscience, we
explore basic building blocks from electronics as the basis
set of intrinsic functions that give rise to learning, memory,
and other aspects of cognition in neurobiology. Early work
explored largely hand-designed circuit models (manually de-
signing the weights and connectivity) to compute such func-
tions as oscillators, phasors, and shifter circuits (Marder &
Calabrese, 1996; Anderson & Van Essen, 1987; Touretzky,
Redish, & Wan, 1993), in the service of understanding biolog-
ical computation for rhythmic behavior generation, navigation,
and invariant object recognition. However, as computational
goals and architectures become more complicated and big-
ger, hand-designing networks become simply intractable. In-
deed, backpropagation has been the workhorse of inducing
useful features in artificial neural networks.

Here, we take a different approach: by building on recent
work in physics of dynamical systems (Kim & Bassett, 2022),
we symbolically program large (e.g., typical number of hidden
units on the order of 1000) and biologically plausible recurrent
neural networks (RNNs) to compute basic building blocks from
electronics, such as oscillators, shifters, and set-reset latches
(Fig. 1). This procedure does not involve any training data (no
numerical input-output pairs), nor training (via backpropaga-
tion or similar); instead it requires a symbolic description of the
function to be computed and thus enables direct, hypothesis-
driven exploration of what might be the functional primitives
of neurobiology. These symbolically programmed RNNs of-
fer a new way to harness distributed computation, which we
drive with sensory inputs to learn multiple tasks via simple lin-
ear regressions over their hidden states. We show that these
“intrinsic function RNNs” differentially support cognitive flexi-
bility, including pattern encoding, retention, and discrimination
during multi-task learning.

A basis set of intrinsic functions

We hypothesize that complex computations in the brain can
arise from a basis set of intrinsic functions and their composi-
tions. This is not a novel hypothesis by any means – rather, it
is a theme explored in several theories of neural computation
(Marcus, Marblestone, & Dean, 2014). However, we make a
concrete computational proposal for what this basis set should
be and test it in non-trivial settings. Any such functional basis
set should be (i) general purpose in the sense of being able
to support a wide variety of tasks; (ii) drive-able by (sensory)
inputs to support learning new tasks; and (iii) composable to
yield even more complex computation and support learning of
even more complex tasks.

We propose that these intrinsic functions in neurobiology
can be viewed as the set of basic building blocks from elec-



Figure 2: Programming RNNs on symbolically specified func-
tion, instead of training them on exemplars sampled from that
function as is predominantly done. See text.

tronics – of which, in this work, we explore oscillators, shifters,
and set-reset latches. The challenge here is to realize these
building blocks in biologically plausible neural networks so that
sensory inputs can drive and be composable across functions
to support sophisticated computation and learning. Once this
is accomplished, we can ask novel questions, such as whether
an RNN oscillator circuit can support multitask learning and
basic working memory functions.

Programming RNNs on symbolic functions To realize this
hypothesis, we extend a recent method for programming, in-
stead of training as is predominantly done, the weights and
connectivity of RNNs to compute symbolically defined func-
tions (Kim & Bassett, 2022). The class of RNNs we consider
are shown in Fig. 2A with a network schematic and equa-
tions, including the network input xxx ∈Rk, hidden state rrr ∈RN ,
and output ooo ∈ Rm, with weight matrices B (input weights),
A (recurrence weights), and W (read-out weights) connecting
these quantities. To program this RNN, we formalize its hidden
state as a symbolic function in network inputs via lineariza-
tion (Fig. 2B). We then program an output matrix o based
on a symbolic specification of the function we wish the RNN
to compute, which is illustrated for a linear dynamical system
(Fig. 2C). The translation between the hidden state and this
output matrix, the read-out weights W is simply solved for via
a linear equation (Fig. 2A, bottom). Critically, these read-
out weights can be connected back into the RNN to program
the connectivity matrix of the RNN A and enable functional
composability (Fig. 2D). In our linear system example, these
feedback dynamics simulate trajectories (Fig. 2E).

Intrinsic function RNNs In this study, we explore three in-
trinsic function hypotheses: a shifter (i.e., a lag operator; Fig.
3A), a ring oscillator with three NAND gates sequenced via
feedback (Fig. 1), and a set-reset latch with two NOR gates
connected via feedback (Fig. 1). To study the computational
efficiency of intrinsic functions, we also vary the size of hidden
units (range: 30 to 1500 units). We consider as a baseline
randomly connected RNNs.

Driving intrinsic function RNNs with sensory inputs and
multitask learning Given a programmed RNN, we drive it
using sensory and task inputs and test this RNN on multitask
learning (Fig. 3B). Our overall architecture is shown in Fig. 3B.
We expose three inputs to programmed RNNs. Two of these

Figure 3: Intrinsic function RNNs differentially support multi-
task learning. See text.

inputs encode sensory information, including a scalar fixation
input and a scalar sensory feature. (In this work, the sensory
feature is a random projection of a higher-dimensional sen-
sory input indicating a direction signal.) The third input to the
RNN encodes the task using one-hot coding, which sets the
bias term, d (see inset equation, Fig. 3B). We store a bias
term for each task by evolving the programmed RNN and reg-
istering its hidden state at every K time steps (K=1000). This
procedure encodes the tasks using the expanse of the state-
space afforded within the RNN dynamics.

For learning, we drive each RNN on 100 labeled example
trials of each task – with each trial consisting of 65 time steps,
during which fixation, sensory feature, and task are fed into
the RNN. We then linearly regress the hidden states of the
RNN onto labeled behavioral outputs. We test model perfor-
mance on a held-out dataset. We emphasize that this simple
learning strategy allows directly testing the ability of the pro-
posed intrinsic functions to support multitask learning.

Results
Intrinsic function RNNs support multi-task learning We
test intrinsic function RNNs on a standard multi-task learning
battery with 6 tasks (Masse, Rosen, Tsao, & Freedman, 2022)
(Fig. 3C); we follow Masse et al. (2022) for coding fixation and
sensory inputs.For each functional hypothesis, we report the
average accuracy across 3 RNNs. All three intrinsic function
RNNs outperform a random network baseline (Fig. 3D). Im-
portantly, these programmed RNNs show some robustness to
noise – their performance gracefully decreases with increas-
ing noise (Fig. 3E).
Intrinsic functions vary in computational efficiency We
find that the computational efficiency – as a function of the
number of hidden units – of the different intrinsic functions
vary. The oscillator RNN was most efficient – typically yield-
ing better performance for the same number of hidden units
relative to other intrinsic functions.

Conclusion
We explored common building blocks in electronics and
physics as a basis set of intrinsic functions to support compu-
tation in the brain. This direct hypothesis-driven exploration of
intrinsic functions was enabled by a new way to harness the
distributed computation in neural networks – programmable
RNNs. Future work should expand the scope of intrinsic func-
tions and tasks as well as make contact with empirical data.
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