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84 Physical Object Representations

for Perception and Cognition

ILKER YILDIRIM, MAX SIEGE], AND JOSTTUA TENENBAUM

ARSTRACT Theorices nf‘pcrc.cpliun typically assume that the
goal of sensory proc‘cssmg is m. (-)ulpm simple categorical
‘m“.]g or low-dimensional quantities, such as the identities
and locations of ohjects in ascene. But humans perceive much

more in a scener we pereeive rich and detailed three-

dimensional shapes and surfaces, substance properties of

abjects (such as whether they are light or heavy, rigid or soft,
solid or liquid), and relations between ohjects (such as which
objects support, contain, or are attached to other objects).
These physical targets of perception support flexible and
complex action as the substrate of planning, reasoning, and
]n-ob]mn-sn]\‘ing. In this chapter we introduce and argue for
a theorv of how people perceive, learn, and reason about
objects in our sensory environment in terms of what we call
plysical object vepresentations (PORs). We review recent work
showing how this explains many human judgments in intui-
tive physics, provides a basis for object shape perception when
traditional visual cues are not available, and, in one domain
of high-level vision, suggests a new way Lo interpret multiple
stages of hierarchical processing in the primate brain.

Consider the scenes in figure 34.1A4 and B. In each case
we see aset of apples in a certain geometric arrangement
(figure 34.1C, D). But we also see so much more: We see
fine-grained details of their three-dimensional (3-D)
shapes. We infer their physical properties and relation-
ships: which objects are supporting which others and how
heavy or light or hard or soft they would feel if we picked
them up. We can predict whether the stack would topple
if the middle apple on the bottom row were removed,
and we can plan how to pick the designated apple with-
ot making the rest unstable. We can also “see” that pick-
g the apple in figure 34.18 is much easier and can be
achieved with just one action using just one hand (as
“pposed 1o the two hands or a more complex sequence of
u.‘( tions needed for the stack in figure 34.14). These abili-
HES are present even early in childhood (figure 34.115)
ndare likely shared with other species, particularly non-
uman primates (figure 34.1/9. They are general pur-
Poseand can be used to think about many different
Kinds of physical scenarios and judgments: For instance,
tan you arrange a set of objects into a stable tower using
Wouden blocks or Lego bricks (as in figure 34,117 What
aboug using stones or bricks or cups or even apples?

How might we explain these flexible, scemingly
effortless judgments? This chapter presents an answer
centered at the notion of physical object representa-
tions (PORs), a hasic system of knowledge that supports
perceiving, learning, and reasoning about all the
objects in our cnvironment—their shapes, appear-
ances, alfordances, substances, and the way they react
to forces applied to them. Our goal here is to outline a
computational framework for studying the form and
content of PORs in the mind and brain. PORs can be
considered an interface between pcrccpti(m and cogni-
tion, linking what we perceive to how we plan our
actions and talk about the world. Despite their funda-
mental role in perception, many important questions
about object representations remain open. What kind
of information formats or data structures underlie
PORs so as to support the many ways in which humans
flexibly and creatively interact with the world? How can
propertics of objects be inferred from sensorv inputs,
and how are they represented in neural circuits? How
can these rcprcscnlali()ns in[('g[';llv sense data across
vision, touch, and audition?

After introducing the computational ingredients of
POR theory [rom a reverse-engineering perspective, we
review recent work that is beginning to answer some of
these questions. We focus on three case studies: (1) how
PORs can explain human judgments in intuitive phys-
ics, across a broad range of physical outcome predic-
tion scenarios; (2) how PPORs provide a substrate for
physically mediated object shape pereeption in scenar-
ios where traditional visual cues fail and a natural sub-
strate for multimodal (visual-haptic) perception and
crossmodal transfer; and (3) how in one domain of
high-level vision—face perception—PORs might be
computed by neural civenits, and how thinking in terms
of PORs suggests a new way 1o interpret multiple stages
ol processing in the primate brain,

Physical Object Representations

How, in engineering terms, can we lormalize PORs?

There are two main aspects to our proposal. The first is
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MGURe 340 A and B How would you pick up the apples

indicated while maintaining a stable arrangement of the
other objects? It is easy to see that you will likely need to
touch more objects (and probably use two hands) in panel
(A), while the apple in panel (B) can be removed on its own
with just one hand. € and D, What is where? Semantic

a working hypothesis about the contents of PORs. We
draw on tools developed for video game engines (Greg-
ory, 2014), including graphics (Blender Online Com-
munity, 2015) and physics engines (Coumans, 2010;
Macklin, Miller, Chentanez, & Kim, 2014) and plan-
ning engines {rom robotics for grasping and other
humanoid motions (Miller & Allen, 2004; Todorov, Erez,
& Tassa, 2012; Toussaint, 2015). These tools instantiate
simplified but algorithmically tractable models ol real-
ity that capture our basic knowledge ol how objects
work and how our bodies interact with them. In these
systems, objects are described by just those atwributes
needed to simulate natural-Jooking scenes and motion
over short timescales (~2 seconds): 3-D geometry, sub-
stance or mechanical material properties (e.g., rigid-
ity), optical material properties (e.g., texture), and
dynamical properties (e.g., mass). Video game engines
provide causal models in the sense that the process by
which the data (i.c., natural-looking scenes) are gener-
ated has some abstract level of resemblance (o its cor-
wsprm(ling real-world process inadlorm efficient cnough
Lo support real-time interactive simualation.

Second, we embed these simulation engines within
prol);ll)ilisli(' generative models. Physical properties of
an object are not directly observable in the vaw signals
arriving at our sensory organs. These properties,

400
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segmentation maps showing class labels and loca
objects from pancls (A and B). E, A child playing with
ing cups. Screenshot from https://www.youtube.com
v=dEnDjyWHN4A. /5 An orangutan building a tow
large Lego-like blocks. Screenshot from https://wwwyou
-com/watch?v=MxR]jzSY_JE&t=21s. (See color plate

ously and unambiguously specify the domain
being studied, and to explain how, given senédfyflg
latent properties and relations in the underlying ph
cal scene can be reliably inferred through some fo
approximate Bayesian inference (see Kersten 1
rater [2002] for an in-depth treatment of this
tive). The probabilistic models we build to
PORs can be seen as a special case of probabilis
grams, or generalizations of directed graphica
(Bayesian networks) that define random variabk
conditional probability distributions relating va
using more general data structures and algorith
than simply graphs and matrix algebra (s¢e
mani [2015] and Goodman and Tenenbaum [20 "t,
an introduction). : i ‘
The POR framework is closely related to ,‘.m
synthesis (AXS) accounts of perception: tl}e na
perception is fundamentally about invel‘t!_"gffh
process ol image formation (Helmbholtz & 50
19205 Rock, 1983). In this view, [)Cl‘cepu’w‘l
model the causal processes by which natuml.. B
y which 1ME8

7

constructed, as well as the process b
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jormed [rom scenes; this is mechanisiyg for the
(

(hetical ".\'\'nllu‘.?is“ ol n-.‘uur;ﬂ images, i the style of
computer 'erpl.u'("s.. by using a graphics engine, Pereep-
tion (O “amalysis ) is then the searcly ororinference

(he hest explanation (or pl.:msihlc ¢
ohserved image in terms of this synt
POR framework can be impleme

hypo-

to
Xplanations) of an
hesis, whicly inthe
nted using Bayesian
inference.

\ost mechanisms for :lpp;-nxim:\ling

Bayesian infer-
nee that have traditionally bee
[§

N proposed in analysis
o synthesis (e.g, Markov chain Monge Carlo,
\‘1(17\'|(;) scem implausible when consjde
sithmic account of perception: they
ative and almost always far 100 g

or
red as an algo-
arc inherently jter-
ow relative (o the
dynamics of perception in the mind or brain. We

draw
on recent advances in machine le

arning and probabi-
listic programming (including deep neural networks,
particle filters or sequential importance

samplers,
data-driven MCMC, approximate

Bayesian computa-
ion, and hybrids of these methods) o construct effi-
cient and neurally plausible approximate algorithms
for the physical inference tasks specified with our prob-
abilistic models.

While our focus in this chapter is perception, the
domain of the POR framework is more general. W
causal model of the world (including its st

itha

ate-space
structure—i.c., object dynamics and interactions in a

physics engine) and a planner based on a body model,
the POR framework transforms the physical environ-
mentaround us into something computable, naturally
supporting many aspects of cognition, including rea-
soning, imagery, and planning for locomotion and
object manipulation via simulation-based inference
and control algorithms. In this sense, PORs express
functionality somewhat analogous to the “emulators”
of emulation theory (Grush, 2004), an earlier proposal
loran integrated account of perception, imagery, and
motor planning that also fits broadly within a Bayesian
dpproach 1o inference and control. A key difference is
the language of representation for state, dynamics, and
observation. Emulation theory was formulated using
classical ideas from estimation and control, such as the
Kalman filer: body and environment state are repre-
sented as veetors, dynamics are linear, and observa-
tions are linear functions of the state with Gaussian
added noise, The computations supported are simpler
but much Jess expressive than in the POR framework,
where siage is represented with structured object and
Sene descriptions, dynamics using physics engines,
el abservation models using graphics engines, PORs
“an thug explain how cognitive and perceptual pro-
(Ses operate over a much wider range ol physical

“Cnarios, varying greatly in complexity and content,
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: . achinery to
although they require more algorithimic machinery

7
do so,

Intuitive Physical Reasoning

Having overviewed the basic components ”'_l’(”{“' m‘-
now turn to recent computational and hr-h;lwur.;rl wu’rk
exploring theirapplication in several domains, We hegin
with intuitive physics, in the context of suim- |II’H!('TI'-
standing. Recall the introductory example rl_I"~P|",""‘1 m
figure 34.1. The POR framework was first ”“‘.-nr_lur(-rl
to answer these kinds of questions, in a form similar to
how we characterize it here, by Battaglia, Hamrick, and
Tenenbaum (2013). They showed that approximate
probabilistic inferences over simulations in a gun.u-—stylc
physics engine could be used to perform many (llffc‘rcnl
tasks in blocks-world type scenes. While physics engines
are designed to be deterministic, Battaglia, Hamrick,
and Tenenbaum (2013) found that human judgments
were best captured using a probabilistic model that
combined the deterministic dynamics of the physics
engine with probability distributions over the uncer-
tain geometry of objects initial configurations and/or
shapes, their physical attributes (e.g., their masses), and
perhaps the nature of the forces at work (e.g., friction
or perturbations of the supporting surface).

In one version of this model (hgure 34.2), input
images comprised one or more static 2-D views of a
tower of blocks in 3-D that might fall over under arav-
ity, and the task was to make various judgments about
what would or could happen in the near future. Object
shapes and physical properties were assumed to be
known, but the model had 1o estimate the 3-D scene
configuration for the blocks. This inference step used
AXS with a top-down stochastic search-based (MCMQ)
procedure: Block positions in 3-D are iteratively and
randomly adjusted until the rendered (synthesized)
2-D images approximately match the Input images;
multiple runs of this procedure vield slightly different
outputs, representing samples from an
Bayesian posterior distribution on scencs
Once these physical object represent

approximate
given images,
ations are estab-
lished, they support a wide range of dynamic
ences that go well beyond the purely st
the perceptual input. How likely is the
it falls, how much of the tower will (all? In which direc-
tion will the blocks fall? How fur wil] they fall? If the
table supporting the tower were
which of the blocks would fall off (he
is unstable, what kind of
could hold it stable?

al infer-
atce content in
tower to fall® If

ped, how many or
table? If the tower
applied force or other action

To see how these judgmens

are computed, consider
answering the questions: How

likely is the tower o fall?
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FIGURE 4.2 A schematic of the POR framework applied to
intuitive physical reasoning with a tower ol wooden hlocks.
Left to vight, The input image: inference to recover the 3-D
scene and physical properties of objects; physics engine

How much of this tower is likely to fall? One way 1o
make these judgments is to run a small number ofl for-
ward simulations using a physics engine (implemented,
e.g.. using Bullet & Coumans, 2010), starting from the
sample of conligurations returned by the probahilistic
3-D scene inference procedure. These simulations run
until all objects stop moving, or some short time limit
has elapsed. The distribution of their outcomes repre-
sents asample of the Bayesian posterior predictive dis-
tribution on future states, conditioned on the input
image and the model's representation of physics. Pre-
dictive judgments such as those above can then be cal-
culated by simply querying each sample and
aggregating: for example, the model's judgment of
“How likely is the tower to fall?” is calculated as the
average number of simulations in which the tower fell
(relative to the total number of simulations ran); “How
much of the tower is likely to fall?” is calculated by aver-

aging the proportion of blocks that fell in each
simulation,
Strikingly, Bauaglia, Hamrick, and Tenenbaum

(2013) found that only a few such posterior samples
(they estimated typically three o seven samples per
participant, per trial), generated from the highly
approximate simulations of video game physics engines
under perceptual uncertainty, were sulficient to account
for human judgments across a wide range of tasks with
high quantitative accuracy. In the last several years, a
growing number of behavioral and  computational
studies have developed approxiniate probabilistic simu-
lation models ol the PORs underlying our everyday
physical reasoning abilities. Studies have examined
inuitive judgments ol mass [rom how towers do or
don’tfall (Hamrick, Battaglia, Griffiths, & Tenenbaum,
2016); predictions about future motions (Smith, Batra-
glia, & Vul, 2013h; Siith, Dechier, Tenenbanm, & Vul,

2013a); judgments of multiple physical properties (e, .,

friction as well as mass) and latent forces such as
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simulation to predict near-future stageg given the

initial configuration; and questions that cap, be angy, € in fe"
tasks that can he performed based on such Simulag; e:dand "

magnetism from examining how objects mOVe and
lide in planar motion (Ullman, Sluh]muller G ol-
man, & Tenenbaum, 2018; sec also the Seming] ea:]ﬁd
work on probabilistic inference in collisiong by St
born, Mansinghka, and Griffiths [2013])' and Predn.
tions about the behavior of liquids such as water 4 |
honey (Bates, Yildirim, Battaglia, &Tenenbaum 20]:,. 1
Kubricht et al., 2016), and granular materials. Sllch as R
sand (Kubrichtetal., 2017), falling llllder‘gra‘nty Taken £
together, these studies show how the POR fmmeh'ork
provides a broadly applicable, quantitatively testable,  §
and functionally powerful computational substratc fo; §
everyday intuitive physical scene un([erst"mdmg 4
How might PORs and their associated computanom
be implemented in neural hardware? As a first slep 4
toward addressing this question, a recent funcuonal
magnetic resonance imaging (FMRI) study in hi mans
aimed to localize cortical regions involved in manyh
the intuitive physics judgments discussed above (Fischer,
Mikhael, Tenenbaum, & Kanwisher, 2016).
etal. (2016) found a network of parietal and 3,

physical tasks (such as color judgments, or
(llcunm) with l]w same or hlghly smuhr sllm

201 1) These networks ¢ lmel) ()\'elhp with ne
action planning and tool use in humans (se
and C ullmm ["()lﬁj for a le\'low) and the ml

action lI!I[ll'I\l-‘.ll(lll]g (!\l!!()]dlll & (J .llgherQ :
consistent with the proposal that PORs plowdﬂ
between perception and cognitive functions ©
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FGURE 84.3 A, Example pairs of unoccluded objects and
cloth-occluded matches in different poses. B, An example
wrial from Yildirim, Siegel, and Tenenbaum (2016), where the
task is to match the unoccluded object 1o one ol the two
occluded objects. C. A schematic of the POR framework
applied to the object-under-cloth task. Left to right, The input
he 3-D shape of the unoccluded

image; inference to recovert
physics

object and imagining a cloth positioned above it;

reasoning, and problem solving. Future
physiological recordings,
rally grounded mod-

planning,
experimental work using
informed by some of the more neu
ater in this chapter, can now target neural

cls discussed |
se brain networks in order to eluci-

populations in the
date the neural circuits underlying intuitive physics.

Physics-Mediated Object Shape Perception

We now turn to the role of PORs in a more purely per-
ceptual task: perceiving object shape. Vision scientists
traditionally study many cues as routes to 3-D shape,
wuch as contours, shading, stereo disparity, or motion.
ntial route to shape,

12 a
But physics can also he an ess¢
ailable

traditional cues arc unay
necessary for the cor-
il to capture all of

appearance of an

especially when these
or msufficient; such cues may be
fectrecovery of a target shape but [
the causal processes underlying the

YILDIRIM, SIEGEL,

Train (test) on images:

Test (train) on 3D-printed:

BIFEIEa

AND TENENBAUM:

® based shape _ -
AR

Grasping
engine

K

4 of

dict dropping of the cloth on the
angles; and graphics to predict
nsory

engine simulation to the pre
object shown at two different
what the resulting scene would look like. D, A multise
causal model combining a graphics engine with a grasp-
planning engine. £, Example novel objects from Yildirim
and Jacobs (2013), rendered visually and photographed after
3-D printing using plastic.

image. Consider seeing an object that is heavily or even
entirely occluded, as when draped by a cloth (fig-
ures 3128 and 34.34). It is likely vou haven't seen air-
planes or bicycles occluded under a cloth before, but it
is still relatively easy to pair an unoccluded object with
its randomly rotated and occluded counterpart. of
course, shading cues allow you 1o see the contours ol
the cloth as an occluding surface. Yet these cues alone
do not explain how you pereeive the shape of the under-
occluded object, which together with the phvsical
rties of the ¢loth is the real cause of the shading

lying
prope
patterns obhscrved.

Most contemporary approaches o visual object per-
ception emphasize learning to "untangle” or become
invariant to sources of variation in the image (DiCarlo
& Cox, 2007; Serre, Oliva, & Poggio, 2007). On this
account, it processing hicrarchy (such as a deep neural
network) progressively transforms sensory inputs until
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1ostic fora pnrlirul;u'

reaching an encoding thatis diag! | '
jant to other factors

object shape or identity and invai o
(Ricsenhuber & Poggio, 1999). These 3'|’|”A”:f( hes "l‘”_
pertorm very well when trained to ignore ghven "'"':‘T
ol vitriations. but to achicve optimal performanee, they
Auned”) inde-

H g " N
must be trained anew (or at least find
They do

pendently for every new kind of invariance. .
not show instantaneous (zero-shot) invariance for .nvw
ways an object might appear, such as those arising [rom
an occluding cloth. .
The POR framework provides a dilferent ;1|1pm;|c||‘|n
which the goal is not learning invariances but explain-
ing variation in the image with respect to the causal
process generating images from 3-D physical sce
(c.g.. Mumford, 1997: Yuille & Kersten, 20006). For l]ul'
e

nes

object-under-cloth task, this process can he capln
by composing (1) a physics engine simulating how cloth
drapes over 3-D rigid shapes, (2) a graphics engine
simulating how images look from the resulting scenes
(occluded or unoccluded), and (3) a probabilistic infer-
ence engine. The inference engine inverts the graphics
process 1o recover 3-D shapes from unoccluded images
and then imagines likely images under different ways
these shapes could be rotated and draped under cloth
(figure 34.3C). Yildirim, Siegel, and Tenenbaum (2016)
presented preliminary evidence that such a mechanism
fits human judgments in a match-to-sample task, akin
to figure 34.38, across four difficulty levels. In contrast,
a deep neural network trained for invariant object rec-
ognition, but not specifically for scenes involving cloth-
based occlusion, could fit the casiest human judgments
but failed to generalize above chance for the harder
judgments. These results illustrate a key advantage of
the POR framework: the ability to generalize 1o novel
settings not by requiring further training but by com-
bining or composing existing causal models.

The POR framework supports combining causal
models not only across multiple visual cues but also
across sensory modalities. This is because the contents
ol PORs are not specific to vision orany single modality
but instead capture the physical properties of objects
that are the root causes of sense data in every modality,
via appropriate modality-specific “rendering”™ engines
(such as a graphics engine in vision). Embedded in a
framework for probabilistic inference to invert these
renderers, PORs provide a basis for perceiving shape
from any form of sense data, as well as for multisensory
integration and eross-modal perception. Consider the
POR-based model shown in figure 34.30: Starting from
a probabilistic generative model over part-based body
shapes in 3-D, the multisensory causal model combines
avisual graphics engine that generates the 2-1 appea-
ance of cach shape viewed ina given pose with actouch

404 NEUROSCIENCE, COGNITION, AND COMPUTATION:

judgme

or haptic rendering engine, hased ona kinmn;";c fa‘ o
planner, (hat generates the wiy a shape feels i)
hand given i certain grasp trajectory. Bayesiay i

: Nfey,
allows the maodel to estimate a 3-D gl LS

ence then ! ) o cst | D shiie g
explains inputs from either \.'I'sllcll 0l I'“[')“C C}‘ﬂnneh""-
or hoth, as well as to automatically ;ln.(] without f“ﬂhg'; %
(raining transfer that shape from objects firsg c"muﬁ._ ‘
rered in one modality (€4, visually) to recognize ooh
(hev would be perceived in another modality (eg, hapl' A
li(‘;l‘”\’). vildirim and Jacobs (2013) found thyy this
mn(lti'l accounted for the performance of humap s
ticipants in a visual-haptic Cl'().‘i.Slni)(l;ll categorization
task ((‘K:\lll])l(fslin]llli are shown in figure 34'3[':)'These 4
results were extended to avisual-haptic shape Similariyy
nt task (Erdogan, Yildirim, & Jacobs, 2015),

The idea that shared neural representations support
object p(-rccplicm across multiple 5('115(.)ry modalities js
(.(,‘nsistvnl with a number of IMRI studies (e.g,, Amﬂdi; s
Hendler, Malach, & Zohary, 2002; James

Jacobson,

ot al., 2002; Lacey, Tal, Amedi, & Sathian, 2009; Lee

Masson, Bulthé, Op de Beeck, & Wallraven, 2016; Tal &
Amedi, 2009). The POR framework provides explicit
hypotheses as to what the format of such multisenéofy'
neural representations might be. Erdogan, Chen, Gar-
cea, Mahon, and Jacobs (2016) used fMRI to test one -
such hypothesis introduced in their earlier computa-
tional work (Erdogan, Yildirim, & Jacobs, 2015). In -
addition to finding that visual and haptic exploration
of novel objects gave rise to similar patterns of neural
activity in the lateral occipital cortex (LOC), they also
found that this activity could be crossmodally decoded
to the part-based 3-D object structure mentioned al:!q\"b_.
(Erdogan, Yildirim, & Jacobs, 2015). This activity may -
be a result of visual imagery as opposed to haptic pro- -
cessing; however, other work suggests that imagery only -
minimally activates LOC (Amedi, Malach, Hendler,
Peled, & Zohary, 2001; James et al., 2002). Furlt_lgr"""' g
experimental work along these lines, aiming to quanti=
tatively test specific POR models and ideally extending
into physiological recordings from neural popu]at_iO_I_i:Sfr‘_" p
could lead to a more precise understanding of the neu-
rocomputational basis of multisensory perception :md #

crossmodal transler., e

h’m.'(‘r.s'f'-lf.'ngint'r'riug Ventral Visual Stream
Computations Using Physical Object
Representations

We now turn 1o discussing how the POR framework Gl
Hluminate aspects of the neural circuits undc’rl)’_.ipgr
perception. Even though traditional AxS methods car
recover PORs from sense inputs, these algorith{q
(based on top-down, iterated stochastic search) do B
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model
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Attended
face (2D)

- -
ii. Recognition
network
Attended
Image=>»| f1 |=» face =>| 2

image

wekE 1.4 A, Samples from a modern 3-D graphics model
o human face, yielding near photorealistic images (Credic

VIDIA and University of Southern California Institute for

reative Technologies). Across the three images of this face,

sddition 1o knowing that identity is preserved, we can also
preciate the details of the face’s 3-D shape and texture, the
bleties of expression, that vary or remain constant across
pes. B Despite their unfamiliarity, most observers can
il the identity of the naturalistic face on the left o one
the textureless faces (“sculptures™), which must rely on a
‘ol 3D shape. €, Schematic of the efficient AXS
voach including a probabilistic generative model of face

~hly map onto neural computation. Many authors

cthus preferred feedforward network models, most
cutly deep convolutional neural networks (CNNs),
chiare both more directly relatable to neural circuit-
‘I mechanisms and more consistent with the fast
1om-up processing observed in perception. How-
(1L CNNS, typically trained for invariant object recog-
Honor “untangling,” do not explicitly address the

“Hon of how vision recovers the causal structure ol

W and image formation, Therefore, neither tradi-
hal ol : lern CNNs really
approaches 10 AxS nor modern GCNNs really

> | f3|=> (f4] > |f5| =—>» |f6

h“sculpture” has the same face?

2.5D 3D Identity
R John
] Peter
. Mary
P -
’ - e N Nancy
b Mark

image [ormation (pranel ) and the recognition network (panel
ii). Layers [T through (6 indicate the different components of
the recognition newwork. Trapesoids show single or multiple
layers of transformations where a laver can consist of convolu-
tion, normalization, and a nonlincar activation function.
Yildirim et al. (2019) found that transformations across the
model layers £3, 4, and 5 closely captured the vansforma-
tions observed in the neural data from MLAME (middle lae
eral and middle fundus arcas) 10 AL Gnterior lateral area) to
AM (anterior medial avea; Freiwald & Tsao, 2010). (See color
plate 38,

answer the challenge: How do our brains compute rich
descriptions of scenes, with detailed 3-D shapes and
surface appearances, innuch less than asecond?

A new class of computational models aim o combine
the bestaspects of these two approaches by using CNNs
or recurrent networks to map images to their undey-
lying scene descriptions, therehy accomplishing other-
wise computationally costly inference in one or a few
bottom-up passes on the image (Esluni ec al, 2018;
George et al, 2017, Kulkarni, Kohli, Tenenbuam, &
Mansinghka, 2015; Yildirim, Kulkarni, Freiwald, &
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Tenenbaum, 2015 Yilditim, Belledonme, Freiwald,

and Tenenbann (2019) developed one arch approach

nsing the POR fram work and teded §1oas a computa-

iemal 1heory of maltaple dapges of processing in the
vental visnal «iream, a hicrarchy of PIoCessing stages
i 1the visnal brain amway, 2018) This model consists
of twao PAarte a gencratve ynonde] haeed on a mulnstage
4D graphics  program  fon image  santhesis (g
ure 34400 and » recognition model based on a CNN
that approsimatel imverie the penerative model, stage
by stage tigure 34 405 The recognition network is dil-
ferent from comventional CNN« for vision in two wavs.
Fuest, it s taimed 1o produce the inputs 1o a graphics
cngine. the latent or unobservable variables of the
prohabilistic model, instead of predicting cass labels
such as face sdentities. And second, it is tramed in 2
selfssnpervised fashion, with inputs and targets inter-
nally svnthesized Iy the probahilistic graphics compo-
nent: no externally generated Libels are needed. This
approach differs from other recent eflicient AxS
approaches (FEslami et al, 2018, Kulkarni et al, 20105)
and then carher connterparts (Davan, Hinton, Neal, &
Zemel 1995) o that it is based on a probabilistic graph-
s engine (instead of lewning an unstractured genera-
tve model via o generic function approximator) and
therefore more closely ¢ aptures the causal structure of
how 3-D scenes give 1ise o images.

Vil Belledonne,
(2019) tested then approach in one domain ol high-

Fretwald, and  Tenenbaum
level perception, the perception of Laces, Faces give rise
1o anich sense of 3-D shape i addition 1o percepts ofa
discrete idividual's identiy (see tigure 3404, 1), and
face perception has been extensively studied in both
psvchology and newrophvsiology, thus providing arich
source of data and constraints for modeling. The sense
of o face’s 3-D shape also crosses between visual and
haptic modes of perception (Dopjans, Wallraven, &
Bulthoff, 20000, as in the examples discussed above,
Yildirin, Belledonne, Frewwald, and Tenenbaum
(2019) compared two broad classes ol by pothieses for
how we percene the 3D shape of a face and how these
computations are nnplemented in the primate ventral
streame (1 the efticient A=S by pothesis implemented
in thei lt'luglll[lllli network. which Preasits that the var-
pets of ventral stream processing are Litentvariables in
a probalulisne causal model of image tormaton, and
(2 the untanghog byvpothesis nnplemented i stan-
dard deep CNNs for face recogniuon, whiech posits that
the targel of ventral sucam processing is an embed-
ding space aptingnsa d tor discrnminating mnong Lacial
identities. Then recogninon network implementing
the AxS hiypothesis aed .t}ll‘lll.ll( d  vanstormations

across multiple stages ol processing i mfenio wmporal
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(1T) cortex fram micdle Taeral aned tiielef |

areas (MLMEY toanterior Lateral arey (M"'m "y
rior medial area (AN —the three sites jn the ﬂhm’
face patch ssstem—with respeet o the !imil,*ritrs! J
mire of the population-level activity g "ﬂ.(h‘- Fae..
il reiwald & Tsao, 2000, Both in the "”"'"’Lﬂn;m‘;.
the model, these similarity structures Progressed ¢
view-hased to mirrorsvimimetrie ltr\'iew-in,““h‘.]trt. ;
centations. Alternative moclels, includding m.mp"’
implementing the untangling hypothesis, efj Nt ¢y,
ture these transformations. The efficient Ax§ mf.‘p.

also accurately matched human error patterny iy,

including CXperimeny,

18 Can atteng
to cither the shape or rexture components of 4 [“(E

stimulus (figure 3 LB, Finally, the recognition Mode]
suggested an interpretable account of some im(’"ﬂed}.
ate representations in this hicrarchy: in Particulsy,
population-level similarity structure of middie face
patches (ML/ME) can be well accounted fop by the
similarity structure arising from intermediate surﬁﬂ'
representiions, sue h as intrinsic images (normal man:
or depth maps for surface geometry and ;\lbcdm'_&,i.
surlace color) ora 2.5-D sketch. Jne
The efficient AxS approach thus offers a potmﬁﬂ
resolution to the issue of interpretability in systems
neuroscience (Yamins & DiCarlo, 2016). In addition 1g
assessing accounts of the brain in terms of how much
variance in nearal firing rates they explain, the effi-
cient AxS approach suggests that computational neuro-
scientists could aim for “semi-interpretable™ models of
perception where the recognition network as a whole
can be understood as inverting a causal gtﬂt‘fﬁﬁi’t
maodel, and subpopulations of neurons in pnrtft:ﬁ!ag-
stages of the recognition network (such as ML/MF and
AM) can be understood as inverting distinet, identifi-
able stages in the generative model, explicitly repre-
senting hypotheses about the corvesponding aspects of
scene structure encoded in those generative modt‘l
stages. Other populations of neurons (such a.sAl-}
might be better explained as implementing '-'aiu?»bk‘_
hidden-laver nonlinear transtorms between more iﬂm‘
pretable parts of the system. Y.

chophysical — experiments,

designed to determine how Hexibly humag

Conclusion and Future Directions
We believe that there is promising, it pn'linlinal'g‘-t}:‘?‘
dence for the centrality of PORs in the mind and .2
Fhe stongestaspect of this proposal so far is the
cals PORs ofter a solution o problems both l_lm_' '&"
mltinodal perception) and new (¢.g t]lt‘_%"z
draping tsk presented above), pereeptual |'|1§'M ,
Hiatare dithiculi o explain with alternative acet
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- g HTIVE NENTOSE i:.-nr‘r orartificial intelligenee,
‘Il je Temain. however, sigmificant challenges, Fmpiri-
I‘;'“”'L has only begun to tes trong predictions of
" POR (yameworks £ar more hehavioral aned physio-
o al data arce necdeds As we have noted, POR pro-
o arich toundaton for strucinring pereeption and

h
Jog

\Il! - 1 .
havior. but this comes with a heayy computational
ol -

pden. The citictent J\VHlnl\]u'n.uh is one possible way
(e hram might handle this complexity, again more
i« necdedespedially relating the dynamics of
wing in these maodels 1o the dynamics of neural

RTTGA

~,‘|1l|l

compitanon. Further theoretical work is alsa required
o esplore the origins of PORs: how an organism comes
o pssess AN object-based causal model of the world
around .

[ he POR framework also offers new research direc-
Hons for studving aspects of complex behavior produc-
non and ahjedt manipulation. An important advantage
o the POR framework is that cansal models of the
worlil allow for flexible action planning, reasoning,
ol intelligent object manipulation. To illustrate, we
fevisit the grasping engine shown in figure 34.30in its
Lroader context. This grasping engine implements a
planner hased ona simulatable body model (similar to
(orward models wpically invoked in models of motor
controly Jordan & Rumelharg, 1992 Wolpert & Flana-
s, 2000 Wolpert & Kawato, 1998). Such a model
ows cibodied agents to evaluate the consequences
of their actions by simulating them internally before
o without ever) actually performing them. Many
ceanisins likely use this approach—for example, per-
forming simulations for making a judgment about the
"Brecht (2017) suggested that the
morocircnits in the mammal somatosensory cortex

acnon “Can I jump?’

siplement assimulatable body model that can be used
¢ action planning and decision-making. The POR
Camework provides a toolkin o capture these computa-
Jns i engineering terms using existing simulation
cogines (e.g, see Yildirim, Gerstenberg, Saeed, Tous-
it and Tenenbaum [2017] for a proof-of-concept
plomentation in the context of complex object
vanipulation).
Forhaps the mostimportant open question is also the
st challenging: How could simulations with richly
Cictned generative models, such as graphicos engines,
cies cngines, and body models, be implemented in
tabmechanisms? Recent developments in machine
Cing and perception suggest intriguing possibili-
hased on deep learning systems thatare trained
dlate astraciured generative model inan antiticial
al network architecture. Deep networ ks that emu-
Curaphics engines were mentioned abose; while they
HOU el come close to the full Fum tonalny of
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nane e 1Ty pars
traelitional graphies engines, their pefforman

row tlormains ean he 1l|r‘|'rulrr'.:h i
ot fryheiela e tlysr pere

eaive anel comrine

ves o i“’1'-"'”"" In fritinrge illn\ .
Al a4 NELE

symhalic aned thisteibted representatioms, Al :
ttman,  Forraltee, &
l 4 . Tartazha,

Tenenbamm, 2000), interaction netwen ke (Partazha
Pascan, Lai. & Rezende, 20160 and ather graph net

works (Batraglia et al., 2018), and Tuerare e al relation
‘ SNy, have receiverd much

ral plivsics engines (€ Trang.

networks (Mrowea et al,

artention Litely, These systems assuine thsire
anelats relaticn to

1e svin-
holic representations lor eae h abject
other objects and vector regn eeentations for the rules of
physical interactions between objects, this allews n'f‘
dynamics of ohject motion and interaction (e colh-
sions) 1o he learned etticiently end o cred from sme
lated dati. Artilicial neural networks such as these can
be considered partial hy potheses for how graphics ‘"?‘l
physics might be implemented in biological neural €1
cuits: they are almost surely wronig or at hest II)(UI!.I-
plete, but they suguest i way forward, Further work s
needed 1o test these models empinically and o develop
their capacities; currently, they are ver limuted i the
scope of physies they can learn (e a limited ¢lass of
rigid hody interactions, such as billiard halls colliding
on a table). Nevertheless, with these advances and
building on the example of the efficient A=S approach
and other research linking artiticial neural networks o
newral representations in the brain, we see promise in
linking the POR framework 1o neural computation in
perception and well beyond.,
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