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Abstract

When encountering objects, we readily perceive not only low-
level properties (e.g., color and orientation), but also seemingly
higher-level ones – including aspects of physics (e.g., mass).
Perhaps nowhere is this contrast more salient than in the per-
ception of soft materials such as cloths: the dynamics of these
objects (including how their three-dimensional forms vary) are
determined by their physical properties such as stiffness, elas-
ticity, and mass. Here we hypothesize that the perception of
cloths and their physical properties must involve not only im-
age statistics, but also abstract object representations that in-
corporate ”intuitive physics”. We provide behavioral and com-
putational evidence for this hypothesis. We find that humans
can visually match the stiffness of cloths with unfamiliar tex-
tures from the way they undergo natural transformations (e.g.
flapping in the wind) across different scenarios. A computa-
tional model that casts cloth perception as mental physics sim-
ulation explains important aspects of this behavior.
Keywords: cloth perception, intuitive physics, computational
modeling

Introduction
When encountering objects, we readily perceive not only low-
level properties (e.g., color and orientation), but also seem-
ingly higher-level ones – some of which seem to involve as-
pects of physics (e.g., mass and stiffness). Perhaps nowhere
is this contrast more salient than in the perception of soft ma-
terials such as cloths: the dynamics of these objects (includ-
ing how their three-dimensional forms vary) are determined
by their physical properties such as stiffness, elasticity, and
mass.

Existing work emphasize the role of the statistical regular-
ities in the low- or mid-level image features as clues to the
estimation of mechanical material properties (Fleming, 2017;
Nishida, Kawabe, Sawayama, & Fukiage, 2018; Nishida,
2019; Van Assen, Barla, & Fleming, 2018). This hypothesis
is supported by studies that have found that a variety of image
features, such as two-frame motion cues (Kawabe, Maruya,
Fleming, & Nishida, 2015; Kawabe & Nishida, 2016), shape
deformation (Paulun, Kawabe, Nishida, & Fleming, 2015;
Paulun, Schmidt, van Assen, & Fleming, 2017; Schmidt,
Paulun, van Assen, & Fleming, 2017; Schmidt, Fleming, &
Valsecchi, 2020), and multi-frame motion information (Bi,
Jin, Nienborg, & Xiao, 2018), can affect the visual percep-
tion of mechanical properties. However, we do not perceive
individual material properties just as patterns or statistical
regularities, but in the mind they are cast as rich, structured

Figure 1: Soft material, e.g. cloth, often induce rich ob-
ject representations. Left: The Veiled Woman by Rubincam
(2013); Right: the canvas of a hanging painting by Davis
(2019).

physical representations of entities and soft objects that we
can think about and predict future motions of. Consider the
veiled sculpture in Figure 1: despite knowing its true material
(a marble sculpture), we see a soft object, a veil, with a cer-
tain mass and softness that appears to be interacting with the
blowing wind. Similarly, in the hanging canvas, despite its
unfamiliar texture (from its intricate strokes of paint), we can
tell the stiffness of the canvas and estimate its weight from
the folds it makes under the influence of gravity. Such per-
ception is more than just patterns or statistical regularities.
How are soft objects represented in the mind so as to support
such rich inferences that often go far beyond what is in the
sense inputs? And how are these representations inferred and
updated from sequential, dynamic inputs?

Inspired by the recent work in several domains of physi-
cal scene understanding (Battaglia, Hamrick, & Tenenbaum,
2013; C. J. Bates, Yildirim, Tenenbaum, & Battaglia, 2019;
Wu, Yildirim, Lim, Freeman, & Tenenbaum, 2015; Yildirim,
Siegel, & Tenenbaum, 2016, 2020), here we argue that visu-
ally estimating physical properties of cloth must involve not
only image statistics, but also abstract object representations
that incorporate ”intuitive physics” – an abstract, physics-
based representation of approximate cloth mechanics that ex-
plains observed shape variations in terms of how unobserved
object properties determine cloth reaction to external forces.
We realize this hypothesis in a computational model of cloth
perception. In this model, perception of soft object properties
(e.g., mass, stiffness) is cast as approximate probabilistic in-
ference in a simulation-based generative model. This model



incorporates physical principles of how cloth mechanics work
and how soft objects react to external forces in real-time, and
the efficient simulations that take shortcuts to approximate the
otherwise highly complex cloth dynamics. We show that a
Sequential Monte Carlo (SMC) algorithm with limited com-
putational resources (very few particles) can make accurate
inferences of physical cloth properties.

Additionally, we provide behavioral and computational ev-
idence for our hypothesis by studying the ability to “general-
ize” across different scenarios and external force types. We
do so by evaluating the human behavior and the computa-
tional model’s performance on a 2AFC visual matching task.
In this task, we asked observers to visually match the stiffness
of animated cloths reacting to external forces and undergo-
ing natural transformations (e.g., flapping in the wind, falling
onto an uneven surface). In our analysis, we find that the hu-
man matching performance is robust despite the massive vari-
ability in the lower-level image statistics and the higher-level
variability in both extrinsic scene forces (e.g., wind vs. rigid-
body collision) and intrinsic cloth properties (e.g., mass). Via
computational modeling, we find that our model makes in-
tuitive trade-offs between its inferences about the stiffness
and mass of observed cloths, and when these inferences are
used to perform the aforementioned visual matching task, it
captures important variations in the behavioral error patterns.
These results open the domain of the mental representations
of soft objects into computational inquiry, and suggest an ac-
count based on internal models of their mechanics and how
they react to forces.

Task: Perceptual generalization of cloth
physical properties across different scenarios

Most previous studies on the perception of non-rigid objects
require participants to compare physical properties (e.g., liq-
uid viscosity, elasticity of jellylike cubes) within the same
scenario (Bi & Xiao, 2016; Kawabe & Nishida, 2016; van
Assen & Fleming, 2016). Because force type is constant,
the brain doesn’t need to decode the physical principles
that determine how the object deforms in reaction to the
forces—estimating physics is relatively straightforward such
that the visual system can detect a fixed set of image features
to enable robust estimation of the physical properties.

Comparing physical properties across scenarios is much
more challenging—image features vary greatly across scenes,
such that the robust image features for estimation of physi-
cal properties in one scene might not even exist in another
scene. To disentangle the external forces from intrinsic phys-
ical properties and to achieve their invariant estimation, the
brain needs to decode certain physical principles and perform
causal inference based on those principles (e.g., through men-
tal simulation). Thus, being able to generalize across scenar-
ios suggests the involvement of physics-based representations
of soft objects when estimating their physical properties.

Here we designed four scenarios containing a cloth react-
ing to different types of external forces and undergoing nat-
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Figure 2: A. Example stimuli used in the experiment. We
created 4 different scenarios containing a cloth reacting to dif-
ferent types of external forces and undergoing natural trans-
formations—image statistics are very different across differ-
ent scenarios. For each of the four scenarios, the nine im-
ages were taken from the same time step: the upper three
images illustrate the lightest cloth, and the lower three illus-
trate the heaviest. Similarly, the left three images show the
softest cloth, and the right three show the most stiff. B. 2AFC
stiffness matching task. On each trial, participants were pre-
sented with videos triads from three different scenarios, and
were asked to decide which of the two cloths on the bottom
had the same stiffness value as that of the one on the top (i.e.,
target).

ural transformations (Figure 2A). We adopted a 2AFC pro-
cedure that requires participants to compare cloth stiffness
across scenarios (Figure 2B).

Figure 2A shows example frames of the video stimuli that
we used. Stimuli consisted of computer-rendered animations
of cloth reacting to external forces in four different scenarios:
(1) A rotate scenario (upper left panel) consisted of a cloth
laid on a rotating table. The table started rotating with a fixed
angular velocity after the cloth was fully draped on it. (2) A
drape scenario (upper right panel) consisted of a cloth falling
under gravity, from a fixed height, onto a wood frame placed
on the floor. (3) A ramp scenario (lower left panel) contained
a box sliding down a ramp and colliding with a hanging cloth.
The initial height, velocity (i.e., 0), and weight of the box was
fixed. (4) A wind scenario consisted of a hanging cloth be-
ing blown by unknown oscillating winds. The wind profile
was fixed and could be appreciated by the movements of a
light feather in the scene. The animations were simulated
in Nvidia FleX (Macklin, Müller, Chentanez, & Kim, 2014)
with the same set of parameters, including the cloth size (105
⇥ 105), friction coefficients, damping coefficients, iterations,
time steps, etc. The cloth in each scenario was simulated with
a wide range of stiffness (2�7,2�5,2�3,2�1,21) and mass
(2�2,2�1,20,21,22) values with a total of 100 unique cloth
animations, each having 200 frames. The animations were



rendered using Blender (v. 2.7.9.) Cycles Render Engine with
the same rendering parameters for the four scenarios except
for a slight difference in the camera angle.

Figure 2B shows the 2AFC stiffness matching procedure
used in this experiment. On each trial, observers were pre-
sented with video triads – one “target” video on the top and
two ”alternate” videos on the bottom – and they were asked
to decide which of the two alternative cloths had the same
stiffness value compared to the target. Participants indicated
their choice by clicking the “left”/“right” button below the
two alternatives. For the two alternatives in each trial, the
one simulated with the same stiffness parameter as the target
was denoted as the “matching”, and the other, with a differ-
ent stiffness parameter, was denoted as the “distractor”. The
three videos in each trial were always from different scenar-
ios, and the mass of each cloth was randomly sampled from
the five levels. The total number of unique trials was 480.
For each observer, we randomly selected 100 trials by bal-
ancing task difficulty, d = 1/log(2) sti f f nessmatching

sti f f nessdistractor

, such that
there were equal number of trails (i.e., 5) at each difficulty
level.

Computational model: cloth perception as
mental physics simulation

We hypothesize that visually estimating the properties of soft
objects in a dynamic scene amounts to probabilistic inference
in a generative model that describes the mechanics and state-
space of how soft materials respond to external forces applied
to them. First, we describe the generative model to capture, in
engineering-terms, our practical knowledge of how soft ma-
terial works. Second, we describe an approximate inference
procedure to condition this generative model on the observed
object state and to make inferences about its underlying stiff-
ness and mass properties.

Generative model
The generative model consists of prior distributions over the
physical properties (mass and stiffness) of a cloth and then
simulating how it moves under the external forces in a scene.
To capture the full variation of stiffness and mass observed
in our task, we place uniform priors on mass and stiffness
during scene initialization (mass m0; stiffness s0): m0 ⇠
Uniform(2�2,22) and s0 ⇠Uniform(2�7,21).

We implement the simulation process using a particle-
based physics engine, FLeX, denoted Y. In FLeX, soft object
mechanics, rigid body simulation, as well their interactions
are all formalized as particle-particle interaction rules. Thus,
it is referred to as a “universal” simulation engine as it can use
the same substrate to simulate different forms of the matter.
A cloth is simulated as a grid of particles connected to each
other by massless springs that induce the effect of stiffness in
that object.

To initialize a cloth simulation, we sample its physical
properties (mass and stiffness), a scene configuration includ-
ing shape and position of stationary physical objects (collid-

ers) and moveable physical objects (e.g., feather, box), and
any external forces (e.g., wind; gravity, which is turned on
in all scenes; see Figure 3 “initialization”). The scene con-
figurations are treated categorically, consisting of one of the
four scenarios in our task. Once a scene is initialized, its state-
space is unfolded over consecutive time steps, outputting sim-
ulated velocities (vi, j,t 2 R3) and positions (pi, j,t 2 R3) for
each simulated particle i, j at each time step t (Figure 3). To
avoid unnecessary clutter, we denote velocities and positions
of all particles at time t as vt and pt .

Finally, in the generative model, we assume that the mass
and stiffness values come from a temporal kernel such that
they can change over time according to the following Gaus-
sian distributions: mt ⇠ N(mt�1,sm) and st ⇠ N(st�1,ss). In
the context of our work, we largely made this assumption for
computational convenience; however, it is worth exploring
the relationship between the perceptual persistence (Scholl,
2007) of soft objects and varying their mass and stiffness on
the fly.

These conditional distributions induce the following poste-
rior that we wish to estimate.

Pr(mt ,st |pO
t
,vO

t
,Y) µ Pr(p

O
t
,vO

t
|pt ,vt)⇥

Pr(pt ,vt |pt�1,vt�1,st ,mt ,Y)⇥
Pr(st ,mt |st�1,mt�1)dY

where Pr(p
O
t
,vO

t
|pt ,vt) is the likelihood function (a nor-

mal distribution centered around the predicted positions and
velocities with an observation noise of sO) and dY is a dirac-
delta function at Y.

Approximate inference using SMC
We hypothesize that perception of soft object properties can
be cast as probabilistic inference in this simulation-based
generative model. As an instantiation of our hypothesis, we
aim to extract the mass and stiffness of the cloth, the material
properties that causally influence the cloth’s behavior (shown
as dashed orange arrows in Figure3), while it is swivelling
(rotate), waving in the wind (wind), falling on an uneven sur-
face (drape) or being hit by an object (ramp).

We use the Sequential Monte Carlo (SMC) method to in-
fer these latent parameters of a cloth given the observed state
measurements C

O
t
= (p

O
t
,vO

t
), where p

O
t

and v
O
t

denote the
observed positions and velocities of the simulated particles of
the cloth at time t. Instead of computing these observations
from an image, in this work, we assume that they are given.
We come back to this assumption in the Discussion section.
Overall, the goal of this inference procedure is to recover the
posterior given by Pr(m,s|CO) = P(CO|m,s)P(m,s).

In our model, N SMC particles (as in particle filtering, not
to be confused with the FLeX particles) are initialized with
uniformly sampled mass m0 and stiffness s0 values. Each
particle passes their latents and state into the FLeX engine to
generate the next predicted cloth states {C1}N = {(p1,v1)}N .
SMC computes the score for each particle by comparing
{C1}N

with the observed cloth state C
O

1 and randomly sam-
ples N new particles in the proportion to their scores. We
implemented this inference procedure using a state-of-the-art
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Figure 3: Schematic of our modeling framework. The generative model is described by the flowchart in the black frames and
black arrows connecting them. This generative model takes as inputs a scenario (e.g., the “ramp” scenario), the external forces
in the scene (e.g., gravity, wind), and the hidden physical properties of the cloth (mass mt ; stiffness, st ), and simulates the
cloth’s movements, predicting the cloth state measurements (pt ,vt). This simulation process is implemented using a particle-
based physics simulation engine (Macklin et al., 2014). We assume in the generative model that the 3D cloth state is observed
(positions and velocities, p

O
t
,vO

t
of each simulated cloth particle). We perform online belief updating in this model over video

input using sequential Monte Carlo (SMC; inference conditionals are illustrated by the orange dashed arrows). At a given
time step t, SMC compares the predicted state based on the simulated cloth (pt ,vt) with those in the observation (p

O
t
,vO

t
), and

accordingly updates its mass and stiffness beliefs.

probabilistic programming package called Gen (Cusumano-
Towner, Saad, Lew, & Mansinghka, 2019).

Simulation details
In all our experiments, we use a cloth with 105⇥105 grid of
vertices, with homogeneous mass and spring stiffness values
across all cloth particles (FleX particles).

In our SMC simulations, we use 20 particles in all four sce-
narios. We assign the observation noise sO = 1.0. The ker-
nel variance parameters for mass and stiffness are as follows:

sm = 0.1 and ss =

(
0.01, Bernoulli(0.9)
0.5, otherwise

.

For each input observation, we simulate 7 SMC chains. In
our behavioral comparisons, we treat each of these chains as
a simulated subject and report their average performance.

Behavioral experiment
Participants
We collected data from 18 participants using Prolific, a
crowdsourcing platform. All participants were naive to the
purpose of the experiments. They agreed with an electronic
informed consent prior to the experiment, and received a

compensation of $4.75 for their participation. This study was
approved by the Yale University Institution Review Board
(IRB). One participant failed to meet the inclusion criteria
(described in the Results below) and thus was excluded.

Procedure
The experiment was conducted using PsiTurk (Gureckis et al.,
2016). At the beginning of the experiment, the participants
were provided with a written definition of cloth stiffness, an
explanation of the task, a description of the four scenarios,
and a few example animations illustrating these scenarios and
the most extreme physical parameter pairings (e.g., softest
vs. most stiff and heaviest vs. lightest cloths; 8 animations
in total). At the end of these instructions, participants were
presented with three quiz questions measuring their compre-
hension of the task and stimuli. The participants needed to
answer all three questions correctly to proceed to the main
experiment. Otherwise, they were directed back to the start
of the instructions.

On each trial, participants were presented with video tri-
ads (Figure 2B) and they were asked to perform a 2AFC
stiffness matching task (described in Section Task). The re-
sponse region was hidden until the participants watched each



video stimuli for 5 sec. Participant indicated their choice by
clicking the “left” or “right” button beneath the alternative
videos, and they could change their response of the current
trial by clicking the other response button. There was no time
limit for each trial and participants was instructed to click the
“Next” button on the bottom center of the experimental page
to move on to the next trial. Each participant completed 100
unique trials.

Results
As an inclusion criteria, we calculated the accuracy (ACC) of
each participant’s matching performance on the 60 easiest tri-
als (|log2(smatching)� log2(sdistractor)| = 4, 6, 8, respectively).
One participant (ACC = 0.57) failed to perform better than
chance level on these trials, and were excluded from the ex-
periment. The following analysis was conducted on data from
the remaining 17 participants (ACC = 0.74 on these easiest 60
trials, SD = 0.005).

The left panel in Figure 4B(1) shows the accuracy pooled
across all participants for each possible stiffness pair between
the matching and distractor item. Each “blue grid” shows a
stiffness pair; the accuracies reported in these blue grids were
averaged across different mass and scenarios. Overall, partic-
ipant’ accuracy was reasonably high considering the difficulty
of this task, ACC = 0.67, p < .001. We observed that as the
stiffness values of the matching and distractor cloths became
more similar, participants had a harder time to differentiate
between them, as is suggested by a decrease in the matching
accuracy. For example, for the pair of a very soft matching
cloth (2�7) and a very stiff distractor cloth (21), participants’
matching accuracy was 0.91; and the accuracy dropped to
0.53 when the distractor cloth had a similar stiffness value
(2�5) to that of the matching cloth (2�7).

Next, we measured the behavioral accuracy as a function of
the stiffness difference between the matching and distractor
cloths (Figure 4C, black line). We found the matching per-
formance dropped as the stiffness difference became smaller
in a log-linear fashion, which was consistent with previous
findings (Bi et al., 2018). Last, we sought to test whether
the differences in mass values impacted participants’ stiffness
matching performance. To to do, we fitted a linear regression
model to predict stiffness matching accuracy at each difficulty
level (i.e., ACC reported in each grid of Figure 4B(1)), using
stiffness difference (Sdi f f = smatching�sdistractor) and categor-
ical mass difference

Mc di f f =

8
><

>:

1, |mmatching �mtarget |< |mdistractor �mtarget |,
0, |mmatching �mtarget |= |mdistractor �mtarget |,

�1, |mmatching �mtarget |> |mdistractor �mtarget |

The model was fitted as below: ACC = 0.10 ⇥ Sdi f f +
0.007⇥Mc di f f +0.003⇥Sdi f f ⇥Mc di f f +0.46. The regres-
sion model explained significant variance in the responses,
F(3,1696) = 1438.0, p< .001, R

2 = .72. The regression
coefficient for the stiffness difference term (i.e., Sdi f f ) was
significant, t= 63.6, p< .001, suggesting that the stiffness

difference between the target and matching significantly im-
pacts the behavioral accuracy. Additionally, the coefficient
for the mass difference term (i.e., Mc di f f ) was marginally
significant, t= 1.721, p= .08, suggesting that the mass has a
marginal effect on stiffness perception.

Overall, the behavioral results suggest that humans are able
to generalize across different scenarios and match cloth stiff-
ness substantially above chance levels. This type of general-
ization is suggestive of physics-based internal representations
of soft objects; In the next section, we turn to computational
modeling to further test our hypothesis, by making compar-
isons to behavior.

Testing models as accounts of human behavior
Simulation results
Figure 4A shows the accuracy of our model’s inferences
across the four scenarios (rotate, drape, ramp and wind). The
model’s stiffness estimates generally become more accurate
as the model accumulates evidence over the course of 200
frames (Figure 4A, first column). Despite the distance to the
ground truth values, the model’s stiffness inferences preserve
the rank order of the stiffness values within a scenario (Figure
4A, second column).

Comparisons to behavior
We now evaluate our model by making quantitative compar-
isons to behavior. We start with noting that the model’s av-
erage accuracy is a little bit higher than behavior (0.72 vs.
0.67).

Figure 4B shows finer grained comparisons between the
model and behavior. We present the performance of the
model across all stiffness pairings between the matching and
distractor items in Figure 4B(2) (integrating over mass vari-
ations). We note that the patterns of accuracy in the model
across the different difficulty levels (in terms of the differ-
ence between the matching and distractor stiffness values)
are largely consistent with what we observe in behavior (Fig-
ure 4B(1)). We quantify the correspondence between these
accuracy patterns of the model and humans in Figure 4D
(R2 = 0.64).

To determine whether mass has any effect on this model’s
performance, we apply the regression analysis, described in
the behavioral section, to the performance of this model. We
find no main effect of the mass (p>.05), however the interac-
tion term between mass and stiffness was significant (p<.01)
indicating that model’s estimates were impacted by its mass
inferences.

Finally, we compare the model’s performance to behavior
at the level of stiffness differences (Figure 4C). We find that
like humans, the model is largely linear in log scale.

Discussion
In this work, we consider the hypothesis that the soft ma-
terial perception can be understood in terms of an abstract,
physics-based representation of such soft objects. To evaluate
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this hypothesis, we presented a cloth perception experiment
that required generalization across scenarios—to our knowl-
edge this is the first experiment to test such generalization in
the context of soft materials. We also presented a simulation-
based computational model of cloth material perception, find-
ing that inferences in this model can explain behavior.

Our work adds to the existing literature showing that hu-
mans’ intuitive physical scene understanding can be best un-
derstood in terms of an underlying mental simulation engine,
to represent how objects move and interact (Battaglia et al.,
2013; C. Bates, Battaglia, Yildirim, & Tenenbaum, 2015;
C. J. Bates et al., 2019; Yildirim et al., 2020; Wu et al., 2015).
We extend this line of work to the domain of soft object per-
ception, visiting cloths as a starting point. We are excited to
further explore the scope of this approach in cloths and in soft
object perception more generally.

A core aspect of our proposal is that the brain might pro-
cess soft materials in terms of non-rigid physical systems.
Neurological studies using “minimal” dot stimuli that can
elicit a variety of physical material perceptions, such as flow-
ing liquids, crumbling cubes, flapping cloth, and bouncing
cube (Schmid & Doerschner, 2018; Bi, Jin, Nienborg, &
Xiao, 2019) find that such objects recruit a wide network of

areas in the brain (Schmid, Boyaci, & Doerschner, 2020).
Most of these regions seem to overlap with the “intuitive
physics regions” reported in (Fischer, Mikhael, Tenenbaum,
& Kanwisher, 2016). This correspondence is consistent with
our perspective that soft material perception involves some
sort of a physical simulation and we hope to explore this pos-
sibility in future studies.

References
Bates, C., Battaglia, P. W., Yildirim, I., & Tenenbaum, J. B. (2015). Humans

predict liquid dynamics using probabilistic simulation. In Cogsci.

Bates, C. J., Yildirim, I., Tenenbaum, J. B., & Battaglia, P. (2019, 07). Model-
ing human intuitions about liquid flow with particle-based simulation. PLOS

Computational Biology, 15(7), 1-29. doi: 10.1371/journal.pcbi.1007210
Battaglia, P. W., Hamrick, J. B., & Tenenbaum, J. B. (2013). Simulation as an

engine of physical scene understanding. Proceedings of the National Academy

of Sciences, 110(45), 18327–18332. doi: 10.1073/pnas.1306572110
Bi, W., Jin, P., Nienborg, H., & Xiao, B. (2018). Estimating mechanical properties

of cloth from videos using dense motion trajectories: Human psychophysics
and machine learning. Journal of vision, 18(5), 12–12.

Bi, W., Jin, P., Nienborg, H., & Xiao, B. (2019). Manipulating patterns of dynamic
deformation elicits the impression of cloth with varying stiffness. Journal of

vision, 19(5), 18–18.
Bi, W., & Xiao, B. (2016). Perceptual constancy of mechanical properties of cloth

under variation of external forces. In Proceedings of the acm symposium on

applied perception (pp. 19–23).
Cusumano-Towner, M. F., Saad, F. A., Lew, A. K., & Mansinghka, V. K.

(2019). Gen: A general-purpose probabilistic programming system with pro-
grammable inference. In Proceedings of the 40th acm sigplan conference on

programming language design and implementation (pp. 221–236). New York,
NY, USA: ACM.



Davis, B. (2019). tinyurl.com/hjiz34kf.
Fischer, J., Mikhael, J. G., Tenenbaum, J. B., & Kanwisher, N. (2016).

Functional neuroanatomy of intuitive physical inference. Proceedings

of the National Academy of Sciences, 113(34), E5072–E5081. Re-
trieved from https://www.pnas.org/content/113/34/E5072 doi:
10.1073/pnas.1610344113

Fleming, R. W. (2017). Material perception. Annual review of vision science, 3,
365–388.

Gureckis, T. M., Martin, J., McDonnell, J., Rich, A. S., Markant, D., Coenen,
A., . . . Chan, P. (2016). psiturk: An open-source framework for conducting
replicable behavioral experiments online. Behavior research methods, 48(3),
829–842.

Kawabe, T., Maruya, K., Fleming, R. W., & Nishida, S. (2015). Seeing liquids
from visual motion. Vision research, 109, 125–138.

Kawabe, T., & Nishida, S. (2016). Seeing jelly: Judging elasticity of a transparent
object. In Proceedings of the acm symposium on applied perception (pp. 121–
128).

Macklin, M., Müller, M., Chentanez, N., & Kim, T.-Y. (2014). Unified particle
physics for real-time applications. ACM Transactions on Graphics (TOG),
33(4), 1–12.

Nishida, S. (2019). Image statistics for material perception. Current Opinion in

Behavioral Sciences, 30, 94–99.
Nishida, S., Kawabe, T., Sawayama, M., & Fukiage, T. (2018). Motion per-

ception: From detection to interpretation. Annual review of vision science, 4,
501–523.

Paulun, V. C., Kawabe, T., Nishida, S., & Fleming, R. W. (2015). Seeing liquids
from static snapshots. Vision research, 115, 163–174.

Paulun, V. C., Schmidt, F., van Assen, J. J. R., & Fleming, R. W. (2017). Shape,
motion, and optical cues to stiffness of elastic objects. Journal of vision, 17(1),
20–20.

Rubincam, A. (2013). tinyurl.com/ypmu9z7c.
Schmid, A. C., Boyaci, H., & Doerschner, K. (2020). Dynamic dot displays reveal

material motion network in the human brain. NeuroImage, 117688.
Schmid, A. C., & Doerschner, K. (2018). Shatter and splatter: The contribution of

mechanical and optical properties to the perception of soft and hard breaking
materials. Journal of vision, 18(1), 14–14.

Schmidt, F., Fleming, R. W., & Valsecchi, M. (2020). Softness and weight from
shape: Material properties inferred from local shape features. Journal of vi-

sion, 20(6), 2–2.
Schmidt, F., Paulun, V. C., van Assen, J. J. R., & Fleming, R. W. (2017). Infer-

ring the stiffness of unfamiliar objects from optical, shape, and motion cues.
Journal of Vision, 17(3), 18–18.

Scholl, B. J. (2007). Object persistence in philosophy and psychology.
Mind & Language, 22(5), 563-591. doi: https://doi.org/10.1111/j.1468-
0017.2007.00321.x

Van Assen, J. J. R., Barla, P., & Fleming, R. W. (2018). Visual features in the
perception of liquids. Current biology, 28(3), 452–458.

van Assen, J. J. R., & Fleming, R. W. (2016). Influence of optical material
properties on the perception of liquids. Journal of vision, 16(15), 12–12.

Wu, J., Yildirim, I., Lim, J. J., Freeman, B., & Tenenbaum, J. (2015). Galileo:
Perceiving physical object properties by integrating a physics engine with deep
learning. , 28, 127–135.

Yildirim, I., Siegel, M., & Tenenbaum, J. (2020). Physical object representations
for perception and cognition. In P. Gazzaniga Mangun (Ed.), The cognitive

neurosciences, 6th edition (p. 399-409).
Yildirim, I., Siegel, M. H., & Tenenbaum, J. B. (2016). Perceiving fully occluded

objects via physical simulation. In Proceedings of the 38th annual conference

of the cognitive science society.


