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Abstract

Much of what we remember is not due to intentional selection, but simply a by-product of per-
ceiving. This raises a foundational question about the architecture of the mind: How does perception
interface with and influence memory? Here, inspired by a classic proposal relating perceptual pro-
cessing to memory durability, the level-of-processing theory, we present a sparse coding model for
compressing feature embeddings of images, and show that the reconstruction residuals from this
model predict how well images are encoded into memory. In an open memorability dataset of scene
images, we show that reconstruction error not only explains memory accuracy but also response
latencies during retrieval, subsuming, in the latter case, all of the variance explained by powerful
vision-only models. We also confirm a prediction of this account with ‘model-driven psychophysics’.
This work establishes reconstruction error as a novel signal interfacing perception and memory,
possibly through adaptive modulation of perceptual processing.

Introduction

So much of what we remember is not the result of intentional selection, but rather the result
of simply perceiving. How are perceptual experiences cast into memory? And how does perceiving
exert control over remembering? These are fundamental questions in the study of the mind with
multiple lines of empirical and theoretical studies designed to uncover the interface between per-
ception and memory (e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]). A striking illustration of the extent
to which perception influences memory is the recent demonstration of ‘memorability’, the finding
that some images are systematically more memorable than others across observers [12, 13]. Forma-
tion of new visual memory traces must recruit both visual and memory-related functions, but the
computational basis of how they interact to produce memory traces remains poorly understood.

Existing computational accounts, inspired by the demonstration of image memorability, largely
consider models that involve vision-only computations, such as the deep convolutional neural net-
works (DCNN) trained for image classification [14, 15, 16, 17]. These studies have established
a quantitative relationship between the summary statistics derived from the later stages of these
networks (e.g., the magnitude of activations of a given layer) and memorability scores of images.
Interestingly, this e↵ect is also observed neurally: the population response magnitude of the inferior
temporal cortex neurons tracks the memorability scores of the presented images. However, these
vision-only models do not attempt to formalize processes responsible for transforming percepts
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into memories and thus remain incomplete as computational accounts of how perceptual processing
relates to memory traces.

A classic psychological account, the ‘level-of-processing’ theory of Craik and Lockart [3], has
attempted to directly address this interface — proposing that a memory trace is a by-product of
the perceptual analysis of the incoming sensory signals and that a ‘deeper’ analysis is associated with
better retention in memory. However, this framework, including a specification of what determines
the depth (or level) of perceptual processing [18, 19, 20], remains largely qualitative and non-
computational. To date, all empirical demonstrations of the level-of-processing e↵ect rely on the use
of an orientating task (as reviewed in [21]), completely missing the automatic nature of perceptual
processing. In fact, work investigating how orientating tasks interact with image memorability
has demonstrated that the e↵ect of such orienting tasks is independent of memorability [22]. A
computational form of the level-of-processing theory must take into account perceptual processing
more rigorously and address how its depth can be modulated on an image-by-image basis.

By addressing the elemental computations thought to be underlying memory – compression
[23] and reconstruction [24, 25] –, we present a new computational model that yields a stimulus-
driven, quantitative measure for how perceptual processing can impact memory formation. This
model combines the vision-only models mentioned above with a sparse coding framework (SPC),
a classic architecture used for compressing information in both computational neuroscience (e.g.,
[26, 27, 28, 29]) and machine learning (e.g., [30, 31, 32, 33]). Our model operates on the activations
evoked by natural scene images in a DCNN trained to categorize scenes and objects [34, 35] and
learns how to reconstruct these evoked activations. When considered over the entire space of signals
to be compressed, reconstruction error, measured as the di↵erence between the signals recovered
from compressed codes and the uncompressed signal, provides a benchmark for evaluating di↵erent
codes for lossy compression [36, 37, 38, 39].

We hypothesize that reconstruction error provides the necessary computational substrate for
gauging and modulating the level of perceptual analysis [3], and thus impacts memory strengths.
In particular, the reconstruction error resulting from the sparse coding model provides a principled
signal to determine how much more processing might be warranted on an image-by-image basis. Ide-
ally, a valid computational account addressing the perception-to-memory interface should capture
di↵erent aspects of memory behavior, targeting not just the accuracy of retrieval, but also system-
atic variance in terms of latencies during retrieval (i.e., response time), in addition to predicting
measurable new phenomena.

Across three studies, this work aspires to this ideal by testing our sparse coding model’s ability
to capture novel aspects of how sensory signals are transformed into memory, above and beyond
what can already be explained by vision-only models. In Studies 1 and 2, we focus on two well-
established and complimentary measures of memory strength: memory accuracy and response times
during retrieval [40]. To this end, we relate the reconstruction errors of images (obtained using the
sparse coding model) to their memorability scores and response times measured in a large scene
memorability dataset[12] while taking into account what can be explained by a standard DCNN
trained for image classification (VGG-16; [34]). We find that reconstruction error explains addi-
tional variance in both memory accuracy (Study 1) and response times (Study 2), subsuming all of
the variance explained by other models in the latter case. In Study 3, we then turn to ‘model-driven
psychophysics’ and predict that the architectural di↵erences between the sparse coding model and
DCNNs would be paralleled in the brain as temporally and functionally distinct processes. In a
pre-registered experiment, we manipulate the encoding times in a rapid serial visual presentation
(RSVP) paradigm and observe that images with large reconstruction error benefit more from longer
encoding times, while controlling for DCNN-driven memorability e↵ects. Together, these results
establish compression-based reconstruction error as a previously unrecognized driver of memorabil-
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ity, and suggest a mechanism in which such reconstruction error modulates the depth of encoding
of the incoming visual inputs.

Results
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Figure 1: Schematic representation of how reconstruction errors are quantified using a sparse coding model (SPC). The
sparse coding model example shown here is based on Layer 7 of a deep convolutional neural network (DCNN) trained
for image classification — the second fully-connected layer from the VGG-16 network; [34]. (B) Example images that
are easy and hard for the SPC to reconstruct. The numbers above the original images are the memorability scores
(hit rates - false alarm rates) as measured in [12].

E�cient compression of sensory activations by minimizing reconstruction error

To model the process of compressing sensory activations underlying our visual experiences, we
built a sparse coding model (in short, SPC) to reconstruct the activations in a given layer of a
DCNN pretrained to classify images of scenes and objects[34] based on the commonly used VGG-16
architecture[35]. The SPC model (see Fig. 1A for a schematic) consists of three layers: an input
layer of 1000 units, an intermediate layer of 500 units for recoding the inputs, and a reconstruction
layer of 1000 units for reproducing the input. We sampled 7 layers (ranging from early to late) from
the VGG architecture and trained a separate sparse coding model for each of these DCNN layers.
Because the dimensionality of DCNN layers is typically very high, we designed the input layer of
the SPC (and thus, the reconstruction layer) to consist of 1000 units randomly sampled from the
corresponding DCNN layer. This design also ensured that the number of parameters to be trained
in the SPC model remains constant despite the fact that the dimensionality of layers varies across
the DCNN architecture. Our SPC model is trained to reconstruct the DCNN activations evoked
by natural scene images (10263 images in total) from a publicly available dataset [12], allowing the
model to learn an e�cient code for reconstructing DCNN activations for complex visual inputs.
Critically, unlike the training of DCNN where the goal is to maximize classification accuracy, the
objective of SPC training is to minimize the reconstruction error (the Euclidean distance between
the reproduced and original activations, subject to a sparsity term on the intermediate recoding
layer; see Fig. 1A and Methods).
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Study 1: Images with larger reconstruction error are more memorable

After training, sparse coding yields substantial variability in how well individual images can be
reconstructed (see Fig. S1). In Fig. 1B, we show example images that are easy and hard for a
representative SPC model (trained on the Layer 7 activations in the DCNN) to reconstruct. We
observe that the hard-to-reconstruct images tend to be more object-centered or contain humans,
relative to the easy-to-reconstruct images. Interestingly, such image attributes have been related
to memorability behavior in earlier work [12, 41]. In fact, even from this subset of images selected
solely based on their reconstruction error, we observe that hard-to-reconstruct images are often
more memorable (memorability scores1 indicated above each image). Based on these observations,
we hypothesize that the images that are harder to reconstruct are also more memorable.

To establish this prediction quantitatively, we focused on the 2221 target images with available
memorability scores measured in [12]. For each of the 2221 target images, we obtained a recon-
struction error from each of the 7 trained SPC models. Then for each SPC model, we correlated the
resulting reconstruction errors and memorability scores of the corresponding images. As shown in
Fig. 2A (left panel), reconstruction errors from all sampled layers in SPC were significantly related
to memorability: images with larger reconstruction error are more memorable. Layers 5 (conv5)
and 7 (fc2) showed the strongest e↵ects.

Since the SPC models were trained based on the activations from a feedforward VGG-16 DCNN
pretrained to classify scenes and objects [34], we next wanted to understand the extent to which
the resulting reconstruction errors are just capturing the same variance in memorability as previous
measures derived from purely feedforward architectures (e.g., [14, 16, 17]). To this end, we derived
a predictor from the DCNN network by sampling the same 7 layers as the ones used for training
the SPC models. Following [16], for each layer and target image, we calculated the distinctiveness
as the Euclidean distance between each target image and its nearest neighbor with respect to the
DCNN’s feature space at this layer. Replicating similar results [14], we found that distinctiveness in
the DCNN across all sampled layers was significantly related to memorability, with the later layers
(Layers 5-7) showing the strongest e↵ects (see Fig. 2B, left panel).

After establishing that both reconstruction error and distinctiveness are significantly correlated
with memorability, we next asked: does reconstruction error capture additional variance in memora-
bility, above and beyond what was already explainable by the DCNN’s feature hierarchy optimized
for image classification? To address this question, we chose distinctiveness from Layer 5 as our
primary measure of distinctiveness since it showed the highest correlation with memorability (Fig.
2B, left panel). We then compared distinctiveness at that layer to reconstruction error as well as
another standard measure also derived from bottom-up feature hierarchy that shows correlation
with memorability: the L2-Norm of activations in a DCNN layer given an image [14]2. First, we
observed that although distinctiveness and reconstruction error were correlated (r = 0.82), this
correlation was not perfectly co-linear and it was significantly less than the correlation between the
two DCNN-derived measures, distinctiveness and L2-norm (r = .99; Williams’ t test: p < .001; see
Fig. S3). These results suggest that the SPC model and the DCNN might capture di↵erent aspects

1The memorability score of a given image is calculated as hit rate minus false alarm rate measured in [12]. Hit
rate is calculated as the proportion of observers who correctly indicated that the image was repeated when the image
was shown a second time to these participants. False alarm rate is calculated as the proportion of observers who
incorrectly indicated that the image was repeated when the image was shown for the first time to these observers. In
other words, a higher score means an image is more memorable after accounting for general familiarity.

2We found that distinctiveness was always better correlated with memorability scores and these correlations were
more robust to the specific choice of layer, relative to L2-Norm (Fig. S2), further justifying our choice of distinctiveness
instead of L2-Norm.

4



A

B

Reconstruction error from sparse coding model

Distinctiveness from VGG-16

Partial correlation 
(after residualizing distinctivenss)Full correlation

Partial correlation 
(after residualizing reconstruction error)Full correlation

Figure 2: Images with large reconstruction error are more memorable. (A) Pearson’s r between memorability and
reconstruction error and partial Pearson’s r after accounting for distinctiveness. (B) Pearson’s r between memora-
bility and distinctiveness and partial Pearson’s r after accounting for reconstruction error. Error bars represent 95%
confidence intervals from 1000 bootstrapping iterations. ***: p < .001, **: p < .01, *: p < .05. P values have been
corrected for multiple comparisons with Bonferroni correction (↵ = 0.05/14).
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of the computations underlying the memorability behavior.
Second, we performed partial regression analysis to directly test for the unique contribution of

reconstruction error to explaining memorability. Specifically, we residualized Layer 5 distinctiveness
(i.e., the DCNN layer that is most predictive of behavior under distinctiveness) from both mem-
orability and reconstruction error. We found that indeed reconstruction error residuals continue
to explain significant variance in memorability (Fig. 2A, right panel): reconstruction error from
Layers 5 and 7 in SPC was still significantly correlated with memorability, after accounting for what
can be explained solely by distinctiveness.

Even though we are primarily interested in evaluating whether reconstruction error can explain
additional variance, for completeness, we also ran a similar analysis by regressing out Layer 5 recon-
struction error (which is the most predictive reconstruction error measure of memorability of all the
layers) from both memorability and distinctiveness. As shown in Fig. 2B (right panel), distinctive-
ness from Layers 3-7 also remained predictive of memorability after controlling for reconstruction
error, again suggesting that distinctiveness and reconstruction error are capturing separable aspects
of the variance in memorability.

Together, these results demonstrate that images with harder-to-reconstruct DCNN activations
are more memorable and that reconstruction error makes additional contribution to image memo-
rability, above and beyond distinctiveness.

Study 2: Images with larger reconstruction error are recognized faster during retrieval

Previous work that explicitly manipulates the depth of encoding with di↵erent orienting tasks
has found that a deeper level of encoding is associated with faster reaction times during retrieval
(e.g., [42, 43, 22]). Thus, if our results from Study 1 have to do with a mechanism in which
reconstruction error modulates the depth of encoding, then we predict that harder-to-reconstruct
images will be retrieved more quickly.

To this end, we analyzed the response time data from the correct recognition trials in [12] (see
Methods on details on data inclusion criteria). Indeed, we found that reconstruction errors from all
7 layers in our sparse coding model were negatively correlated with response times during retrieval
(Fig. 3A, left panel), such that harder-to-reconstruct images are faster to retrieve. We observed
a similar pattern, albeit to a lesser degree and only for Layers 3-6, when we tested distinctiveness
(Fig. 3B, left panel). To dissociate the contributions of reconstruction error and distinctiveness to
explaining the variance in response times during retrieval, we again used partial regressions as in
Study 1. We focused on model layers where we observed a significant correlation in the full corre-
lation analysis and therefore did not perform partial correlation for Layers 2 and 7 distinctiveness.
In the SPC model, the negative relationship between response times and reconstruction error on
Layers 5-7 remained significant after we regressed out Layer 6 distinctiveness (the most predictive
measure of response times in the DCNN) from both response times and reconstruction errors. On
the contrary, distinctiveness decoupled from behavior (Layers 3-6) after we regressed out Layer 7
reconstruction errors (the most predictive measure of response times in the SPC model) from both
response times and distinctiveness.

These results demonstrate the specificity of the relationship between reconstruction error and
response time during retrieval. That is, although both larger distinctiveness and larger reconstruc-
tion error predict higher recognition accuracy, only reconstruction error predicts retrieval e�ciency.
Beyond a mere measure of visual processing, this finding is consistent with our hypothesis that
the magnitude of reconstruction error directly modulates the process, in particular the depth, of
encoding percepts into memory.
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Figure 3: Images with large reconstruction error are recognized faster during retrieval. (A) Pearson’s r between
response times during retrieval and reconstruction error and partial Pearson’s r after accounting for distinctiveness.
(B) Pearson’s r between response times during retrieval and distinctiveness and partial Pearson’s r after accounting
for reconstruction error. Note that partial correlation was only performed if the full correlation turned out to be
statistically significant. Therefore, in the bottom right plot, there were no partial correlation results for Layers 2 and
7 distinctiveness. Error bars represent 95% confidence intervals from 1000 bootstrapping iterations. ***: p < .001, **:
p < .01, *: p < .05. P values have been corrected for multiple comparisons with Bonferroni correction (↵ = 0.05/14).
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Study 3: Images with larger reconstruction error benefit more from longer encoding times

Studies 1 and 2 revealed reconstruction error as a novel source of image memorability and
retrieval e�ciency. These results suggest that reconstruction error might be modulating the process
of encoding itself, in terms of how deeply an image should be encoded, and thus yielding these
measurable relationships in a publicly available dataset. To further establish that reconstruction
error is associated with a functionally distinct set of computations in the mind and brain, beyond
the vision-only computations implemented in the non-linear feature hierarchies trained for image
classification captured in distinctiveness, we turn to a prediction made by our modeling framework
and test it in a ‘model-driven psychophysics’ experiment in Study 3. Our logic is that images
whose activations are harder to reconstruct and thus require a deeper level of processing will fetch
additional mental resources, manifested as longer encoding times and increased memory accuracy
([3]). Therefore, we predict that the memory for images with higher reconstruction errors will
benefit more from longer encoding times.

To test this possibility, we start by sampling images with divergent profiles of distinctiveness
and reconstruction error. Following Study 1 which focuses on memory accuracy, we used Layer 5
distinctiveness as our primary measure of distinctiveness and then selected Layer 7 reconstruction
error from the SPC model as our primary measure of reconstruction error as this measure captures
the largest amount of additional variance in memorability after accounting for distinctiveness (Par-
tial Pearson’s r = 0.16, p < .001; Fig. 2A right panel)3. After settling on the primary measures
of distinctiveness and reconstruction error, we then sampled four di↵erent groups of 48 images
each: images with 1) large distinctiveness and large reconstruction error, 2) large distinctiveness
and small reconstruction error, 3) small distinctiveness and large reconstruction error, and 4) small
distinctiveness and small reconstruction error. ‘Large’ is defined as falling within top 30 percentile
of the target measure (distinctiveness or reconstruction error) and ‘small’ is defined as bottom 30
percentile. See Fig. 4 for example images in each of the four groups.

We adopted a within-participant design with 2 distinctiveness levels (Large vs. Small) × 2
reconstruction error levels (Large vs. Small) × 3 encoding durations (34, 84 or 167 ms). Each of
the resulting 12 conditions was presented as a separate block for each participant. During each
block, half of the trials were target-present trials (i.e., the test image was presented in the RSVP
stream) whereas the other half were target-absent trials (i.e., the test image was not presented in
the RSVP stream). On each trial, participants first saw an RSVP stream of images (see Fig. 5A;
following the trial structure of [44]). Then they were shown a test image and had to indicate whether
the test image was presented in the RVSP stream or not. The experiment design and sample size
were pre-registered (https://aspredicted.org/MFM R22). 45 participants completed the experiment
online via Prolific. We calculated hit rate 4 for each of the 12 conditions (see Fig. 5B).

In Fig. 5B, we can see that although memory accuracy for all images increased with longer
encoding times, images with larger reconstruction error benefited more from the longer encoding
times (as indicated by the steeper slopes). A three-way repeated measures ANOVA confirmed these
qualitative observations: In addition to the main e↵ects of reconstruction error, distinctiveness, and
encoding duration, there was a significant interaction between reconstruction error and encoding
duration. That is, images with large reconstruction error significantly benefited more from longer

3To make sure that the Layer 7 reconstruction error is not just capturing the memorability driven by Layer 7
distinctiveness, we also tested including both Layer 5 and Layer 7 distinctiveness measures in the partial regression
model. Even under this stringent way of controlling for distinctiveness, Layer 7 reconstruction error continued to
significantly capture additional variance in memorability (Partial Pearson’s r = 0.08, p < .001).

4Target images were never used as foils in this RSVP experiment so we could not calculate false alarm rates for
them.
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Figure 4: Example images from each of the four groups with di↵erent Distinctiveness-Reconstruction Error profiles.

encoding duration, relative to images with small reconstruction error (see Table S1).
To directly measure the e↵ect of reconstruction error on memory , we compared regression

slopes relating encoding times to hit rates between the images with large vs. small reconstruction
error. We bootstrapped the di↵erence of these regression slopes between reconstruction error levels
( �LargeRE��SmallRE) separately for each distinctiveness level and sequential pair of encoding times
(Early: 34 ms vs. 84 ms; Late: 84 ms vs. 167 ms; see Methods). This analysis not only confirmed
that images with larger reconstruction error indeed benefit more from longer encoding times, but
also revealed a finer-grained temporal picture of this e↵ect: As shown in Fig. 5C, for images with
large distinctiveness, the memory benefit of large reconstruction error was observed earlier (i.e.,
when encoding time was increased from 34 ms to 84 ms; mean �� = 0.020, p = .045), whereas
for images with small distinctiveness, this reconstruction error benefit was only observed later (i.e.,
when encoding time was increased from 84 ms to 167 ms; mean �� = 0.022, p = .001).

Although Study 3 was conceived to reveal the di↵erential e↵ects of distinctiveness and recon-
struction error in a categorical design (e.g., Large Distinctiveness and Small Reconstruction Error),
next we turned to a finer-grained analysis to ask whether the ability of these models to predict be-
havior depends on time. We predict that if the memory benefit of reconstruction error is the result
of deeper processing and thus requires more time to complete the computation, reconstruction error
should account for more and more variance in memory as exposure time increases. To this end, for
each duration, we correlated the behavioral hit rates at the level of individual images with their
corresponding distinctiveness and reconstruction error. Indeed, as shown in Fig. 5D, we observed
that the correlations between reconstruction error and hit rate increase monotonically as a function
of exposure time (p < .001 from 1000 bootstrapping iterations; see Methods) whereas this pattern
is absent for distinctiveness (p = .526 from 1000 bootstrapping iterations; see Methods).

Together, these behavioral results further demonstrate that reconstruction error contributes to
memorability by modulating encoding depth such that the memory benefit driven by reconstruc-
tion error only manifests itself when given enough encoding time. Moreover, distinctiveness- and
reconstruction error-driven memorability e↵ects exhibit di↵erential temporal profiles and thus are
likely to reflect functionally distinct processes in the mind and brain.
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Figure 5: Images with harder-to-reconstruct representations benefit more from longer encoding times. (A) An ex-
ample trial from the RSVP experiment. (B) Hit rates for each of the four image groups. Error bars represent 95%
confidence interval from 1000 bootstrapping iterations. (C) Di↵erence between the regression slopes of hit rate vs.
time across images with large vs. small reconstruction error, conducted separately for each sequential pair of encoding
times (indicated by colors; also highlighted in panel B, x-axis) and distinctiveness level. Distributions represent the
slope di↵erences from 1000 bootstrapping iterations. ***: p <= .001, *: p < .05. (D) Pearson’s r between distinc-
tiveness/reconstruction error and hit rates across di↵erent presentation times. Error bars represent 95% confidence
interval from 1000 bootstrapping iterations.

Discussion

We present a computational model that combines sparse coding with recent vision models
based on deep convolutional neural networks and gives rise to a new quantitative measure – i.e.,
compression-based reconstruction error – of how perception modulates the strength of memory
traces. In Studies 1 and 2, we show that reconstruction error predicts both memory accuracy and
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response times at the level of individual images. Critically, reconstruction error explains additional
variance in both aspects of memory performance, beyond what can be explained by vision-only mod-
els (e.g., [14, 16]) – including capturing all of the model-explained variance in response times. To
further demonstrate that the modulation of memorability due to reconstruction error reflects a sep-
arate process relative to vision-only models, we run an RSVP experiment and show that the e↵ects
of distinctiveness and reconstruction error on memorability have distinct temporal profiles: Mem-
ory performance increases to a more substantial degree for images that are harder to reconstruct
(controlling for distinctiveness). Finally, as exposure time increases, allowing a deeper analysis
of the relevant scene features when necessary, reconstruction error becomes increasingly predic-
tive of memory whereas the e↵ect of distinctiveness stays more or less constant across durations.
Together, these results not only establish compression-based reconstruction error as a previously
unrecognized driver of memorability, but also suggest a perception to memory interface in which
such reconstruction error modulates the encoding depth of incoming visual inputs.

A signal for modulating depth of encoding

By formalizing the interface between perception and memory with the sparse coding model, our
work puts the level-of-processing theory in a new light. In the original and revised versions of the
theory ([3, 45, 20]), encoding depth has always been conceptualized as a continuum. Yet to date all
empirical demonstrations of the e↵ect of encoding depth on memory remain qualitative, through
manipulating encoding depth with di↵erent orienting tasks (e.g., paying attention to the physical
vs. semantic property of the stimuli; for a review, see [21]). By demonstrating that reconstruction
error, at the level of images, predicts memory accuracy, response latency during retrieval and the
need for more encoding time, we suggest that reconstruction error can serve as an indication of the
resource-rational depth of encoding, filling in a longstanding explanatory gap in the theory.

Multiple mechanisms are possible for how how reconstruction error can a↵ect perceptual process-
ing, leading to deeper or shallower analysis, and thus memory strength. One possibility is suggested
by the predictive coding framework [46], one version of which suggests the existence of predictive
autoencoders that could compute the compressibility and reconstruction error of incoming infor-
mation (e.g., [47]). Another possibility is related to the idea of ‘analysis-by-synthesis’, which posits
the reconstruction of sensory activations via a process of ‘synthesis’ to be part of perceptual pro-
cessing [48, 49, 50, 51]. The current study suggests that such a synthesis process may also provide a
learning signal for memory. Our results also join recent modeling work (e.g., [28, 52, 53]) to suggest
the computational motif of sparse coding as a useful mechanism to formalize memory-related com-
putations in the brain. Future work can build on our framework to explore models that integrate
compression and di↵erent forms of iterative processing guided by reconstruction error, and evaluate
them as accounts of how percepts are cast into memory traces.

A candidate for exploring the neurocomputational basis of the subsequent memory e↵ect

Decades of work in neuroimaging have clearly demonstrated that neural processing during per-
ceptual encoding has a profound impact on what will later be remembered (e.g., the subsequent
memory e↵ect: [54, 55, 1]). Compared to items later forgotten, remembered items elicit greater
activation in higher-level visual regions, frontoparietal attention regions and the medial temporal
lobe [56] and higher pattern similarity across repetitions ([57, 58, 2]). However, the computational
processing that underlies these neural signals measured at the interface between perception and
memory has been elusive. The empirical success of our SPC model in explaining multiple aspects of
memory behavior suggests reconstruction error a plausible quantitative covariate to explain aspects
of the neural signals underlying the subsequent memory e↵ect. Future work should also explore
how reconstruction error may selectively covary with activations from certain brain regions (e.g.,
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frontoparietal regions and medial temporal lobe) vs. others (e.g., visual regions) to help elicit com-
putational processes supported by these brain regions.

Beyond its role in driving memorability, reconstruction error can provide a more general priority
signal that can be useful across multiple domains of cognition. These include the broader range
of memory-related processes such as retrieval [24, 25], modulation of learning during development
[59], and guiding the deployment of visual attention beyond bottom-up salience. Finally, our study
also showcases the utility of ‘model-driven psychophysics’. Computational modeling allows us to
generate quantitative predictions about behavioral performance and in turn, behavioral phenomena
can help constrain and arbitrate between di↵erent models.

Methods

Studies 1 and 2

Dataset

The dataset we used is from [12]. The dataset includes 2222 target images (with memorability
scores measured from human observers; memorability score = hit rate - false alarm rate) and 8042
filler images (without memorability scores). For the reaction time (RT) measure, we only included
RTs during the correctly recognized (i.e., hit) trials. After excluding outliers (+/- 2.5 standard
deviations from the mean RT of all the correct trials), we averaged the remaining RTs for each
target image to obtain one single measure of RT for the target image. The dataset covers a wide
range of outdoor and indoor scenes. After removing duplicate images (i.e., images with di↵erent
indices but identical content), we are left with 2221 target images and 8038 filler images.

Quantifying distinctiveness

We used the VGG-16 network trained for classifying both objects and scenes [34]. The model
is trained to make 1365-way classification consisting of both object and scene categories (by merg-
ing the 1000 classes from ImageNet and the 365 classes from Places365-Standard). We used the
Keras[60] implementation of this model (https://github.com/GKalliatakis/Keras-VGG16-places365).
We then sampled 7 layers across the hierarchy of the network to capture visual features at each
layer. The 7 layers were maxpooling 1-5 and fully connected(fc) 1-2. For simplicity, we referred to
these layers as Layer 1-7 in the manuscript.

To quantify distinctiveness, we first passed all the images (resized from 256 ⇥ 256 to 227 ⇥ 227)
in the Isola dataset (both targets and fillers) through the VGG-16 and extracted activation patterns
across the 7 layers. Following our previous work [16], for each layer, we calculated distinctiveness as
the Euclidean distance between each target image and its nearest neighbor (among all target and
filler images) with respect to the feature space defined by the given layer. We also considered an
alternative measure for quantifying DCNN network activations that was shown to be predictive of
memorability scores (L2-Norm; [14]). We found that both approaches yielded highly similar results
(see Fig. S1). So we report results based on the nearest neighbor approach in the manuscript.

Quantifying reconstruction error

Sparse Coding. A separate SPC model was trained for each of the 7 layers of the VGG-16 network
[34]. SPC involves using linear combinations of a limited number of codewords (i.e., a codebook)
to reconstruct inputs. To do so, we used LCA (locally competitive algorithm) [31] to implement
sparse coding, which is a state-of-the-art method but computationally intensive algorithm. Main
source of computational cost arises from the dimensionality of the inputs to be reconstructed.
Thus, for the sake of computational tractability, we randomly sample d = 1000 columns from

12



the flattened feature activations for each layer. The training objective is then to reconstruct the
resulting 1000�dimensional feature vectors. In the language of SPC, this means that the dimension
of each codeword is 1000.5

Training SPC also requires a regularizer � for controlling how many codewords can be used to
reconstruct a given feature vector. We choose � = 0.001 based on a simple grid search to minimize
reconstruction error. Because this regularization term is sensitive to the scale of feature vectors,
and because we wished to use the same � for all layers, we applied a pre-processing step where
we scaled feature vectors to be reconstructed using a layer-specific constant. This pre-processing
step ensured that the same value of � worked equally well for all layers. 6 Finally, we choose the
codebook size (i.e., the number of codewords available to use for reconstructing a given input) to
be n = 500. This codebook size is a reasonable trade-o↵ between the computational cost of a large
codebook in LCA and the reconstruction error incurred: setting smaller ns significantly increases
reconstruction error.

As mentioned above, a separate SPC model was trained for each layer of the VGG-16 network
using all images in the Isola dataset, including both target images and filler images 7. We used
800 iterations to train each model, where in each iteration a random batch of 50 images are used
as training inputs. In each iteration, model weights are updated at most 500 times in an inner-
loop, or less if the weights converged for the batch. To quantify reconstruction error, we calculated
the Euclidean distance between the reconstructed 1000-dimensional vectors and the input 1000-
dimensional activation vectors for each image.

Evaluating relative contribution of distinctiveness and reconstruction error to memorability and
response times

We performed partial regression to evaluate the relative contributions of distinctiveness and
reconstruction error to memorability/response times. More specifically, we first perform a simple
linear regression (with intercept) that regresses the memorability scores/response times on distinc-
tiveness and obtain residual r1. Then, we perform another simple linear regression (with intercept)
that regresses the reconstruction error on distinctiveness and obtain residual r2. Finally, we cor-
relate r1 and r2, and report statistics from this correlation. We also performed the same set of
analyses to control for reconstruction error.

Study 3

Participants

We recruited 65 participants via Prolific (www.prolific.co). As specified in our pre-registration
(https://aspredicted.org/MFM R22), we excluded participants who did not complete all 12 blocks
of the experiment (N = 19) or who did complete all 12 blocks but did not give a response on over
10% of the trials on any given block (N = 1). Our final sample included 45 participants. The
memory performance of all 45 participants was above chance (all d’ >0).

5We ensured that at this codeword length, the resulting reconstruction error measures were similar regardless of
which 1000 units were randomly sampled and used to train SPC.

6Note that this pre-processing only a↵ects absolute magnitude of reconstruction errors within a layer, but does not
a↵ect relative order among the images with respect to that layer. For our study, the relevant metric is these relative
di↵erences of reconstruction errors, instead of the otherwise arbitrary absolute reconstruction error magnitudes.

7We also tried training only on the filler images and the resulting reconstruction errors for the target images were
largely the same (average r = 0.94).
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Stimuli

To investigate the roles distinctiveness and reconstruction error play in determining memorabil-
ity, we sampled four groups of 48 target images each, with divergent profiles of distinctiveness and
reconstruction error: 1) images with large distinctiveness and large reconstruction error, 2) images
with large distinctiveness and small reconstruction error, 3) images with small distinctiveness and
large reconstruction error, and 4) images with small distinctiveness and small reconstruction error.

To sample these images, we started with using layer 5 nearest-1 neighbor distinctiveness as our
distinctiveness measure because this yielded the highest correlation with the memorability scores
(see Fig. 2A right panel). Then based on the partial regression results, we selected layer 7 recon-
struction error from the sparse coding model as the reconstruction measure because it explained
largest proportion of variance in memorability score beyond layer 5 distinctiveness (see Fig. 2B). In
other words, we bench-marked distinctiveness and reconstruction error using the ‘best’ performing
combination. Using these benchmarks, we designated images in the top and bottom 30 percentile
out of all the images (including targets and fillers) as ‘large’ and ‘small’ in terms of each measure
(distinctiveness/reconstruction error). For each of the four image groups, we then sampled the 48
target images with the most extreme values considering both measures (e.g., for the large distinc-
tiveness and large reconstruction error group, we sampled the 48 images with the largest sum of
both percentiles; for the large distinctiveness and small reconstruction error group, we sampled the
48 images with the largest di↵erence between the distinctiveness percentile and the reconstruction
error percentile).

In addition to the 192 target images sampled in the way described above, we also randomly
sampled 2304 images from the fillers in the Isola dataset to use as fillers in our experiment.

Design

We adopted a within-participant 2 distinctiveness levels (High vs. Low) ⇥ 2 reconstruction
error levels (High vs. Low) ⇥ 3 encoding durations (34, 84 or 167 ms) design. Each condition was
presented as a separate block (i.e., 12 blocks in total, randomized across participants). During each
block, half of the trials were target-present trials (i.e., the test image was presented in the RSVP
stream) whereas the other half were target-absent trials (i.e., the test image was not presented in
the RSVP stream). Trial order was randomized. Each block consists of 32 trials.

Procedure

Participants first completed a practice block of 20 trials with images not used in the actual
experiment and all the practice images were presented for 167 ms each. At the end of each practice
trial, they received feedback on whether their response was correct or not. After the practice
block, participants were instructed to press the space bar to begin each experimental block and
no feedback was given during the experimental blocks. Given the importance of timing for our
experiment, images were pre-loaded at the beginning of each block to minimize the processing
times during trial presentation.

On each trial (following the trial structure of [44], see Fig. 3B), participants first saw a 500-
ms fixation cross, followed by a 200-ms blank screen. Then they saw a stream of 6 scene images
presented back to back. Each image was shown for 34, 84 or 167 ms, depending on the block.
If this was a target-present trial, the target image can be presented as the 2nd, 3rd, 4th, or 5th
image in the RSVP stream (fully counter-balanced). After the RSVP stream, there was another
200-ms blank screen, followed by the test image, which was presented for 400 ms. Participants had
a maximum of 10 seconds to respond either Yes (Press ‘1’) or N (Press ‘0’). After the participant
made a response, the next trial would start.
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Analysis

The primary measure of interest is hit rate (percentage of correctly recognized target present tri-
als), calculated separately for each of the 12 within-participant conditions. To assess the e↵ect of en-
coding times as a function of reconstruction accuracy, we conducted a three-way repeated-measures
ANOVA with the dependent variable being hit rate and the three factors being distinctiveness,
reconstruction error (RE) and encoding durations (Time).

To further investigate how the interaction between distinctiveness, reconstruction error and
encoding times a↵ects memory, we ran bootstrapping analysis to resample the participants with
replacement and only analyze trials where the encoding times are 34 ms and 84 ms (Early) or 84
ms and 167 ms (Late). For each participant, we first separated the trials into large and small
distinctiveness. For each distinctiveness level, we fit two di↵erent linear regression models where
Time was included as the predictor and hit rate as the dependent variable: one for images with
large RE and the other for those with small RE. We then subtracted the fitted beta for Time for
images with small RE from that for images with large RE. We next averaged this beta di↵erence for
all the participants in each bootstrapped sample. If our hypothesis holds, the slope for the linear
regression model for large RE should be steeper than that for small RE and therefore the mean
beta di↵erence should be larger than 0. The bootstrapping procedure was repeated 1000 times and
p value was calculated as the number of iterations where the mean beta di↵erence is small than 0
(i.e., went against our hypothesis).

The pre-registered analysis described above treated distinctiveness and reconstruction error as
categorical variables and aggregated images into separate categories. In the following analysis, we
aimed to test if the time-dependent e↵ect of reconstruction error on memory also would hold when
we evaluated the contributions of distinctiveness and reconstruction error to memorability of images
presented at di↵erent exposure times in a continuous manner across all the target images. For each
duration, we calculated the correlation between distinctiveness/reconstruction error and hit rate
across all target images, respectively. To test statistical significance, we again ran bootstrapping
analysis to resample the participants with replacement. For each iteration, we calculated correlations
between distinctiveness/reconstruction error with hit rate across the three durations. We then fit
two separate linear regression models, one for distinctiveness and the other for reconstruction error,
to relate duration to correlation values. If our hypothesis holds, we should expect the the beta for
the reconstruction error model is positive whereas the beta for the distinctiveness model should
not be consistently positive. The bootstrapping procedure was repeated 1000 times and p value
was calculated as the number of iterations where the beta is small than 0 (i.e., went against our
hypothesis), separately for the reconstruction error model and the distinctiveness model.

Code and Data Availability

Codes and data have been deposited on Github
(https://github.com/CNCLgithub/ReconMem).
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E↵ect DFn DFd F p ⌘2

Distinctiveness (Dist.) 1 44 197.187 < .001 0.353
Reconstruction error (RE) 1 44 27.408 < .001 0.029

Time 2 88 106.498 < .001 0.285
Dist. ⇥ RE 1 44 0.160 0.000
Dist. ⇥ Time 2 88 4.414 .015 0.001
RE ⇥ Time 2 88 4.192 .018 0.001

Dist. ⇥RE ⇥ Time 2 88 3.909 .024 0.001

Table S1: To formally test how distinctiveness and reconstruction error influence the e↵ect of encoding time on
memory performance, we ran a three-way repeated-measures ANOVA with the dependent variable being hit rate and
the three factors being distinctiveness (Dist), reconstruction error (RE) and encoding duration (Time). The table
shows the results. As expected, there were main e↵ects of distinctiveness, reconstruction error and encoding duration.
More critically, we also saw an interaction between reconstruction error and encoding duration, meaning that images
with large reconstruction error benefited even more from longer encoding times, relative to images with smaller
reconstruction error. Interestingly, we also observed an interaction between distinctiveness and encoding duration
and a three-way interaction between distinctiveness, reconstruction error and encoding duration. These interactions
can arise from the di↵erential time-courses of the memory benefit (see Fig. 5C) brought by large reconstruction error
as a function of the distinctiveness levels.
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Figure S1: The distributions of normalized reconstruction errors for the 2221 target images from the seven sparse
coding models (each trained to reconstruct a di↵erent layer of VGG-16).
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Figure S2: Correlations between memorability and two di↵erent measures derived from activation in VGG-16: Dis-
tinctiveness (euclidean distance to nearest neighbor) and L2 Norm (L2 norm of the activation vector).
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Figure S3: Pearson’s correlations between di↵erent measures for Layer 5. Dist(Distinctiveness): euclidean distance to
nearest neighbor. L2 Norm: L2 norm of the activation vector. RE SPC: reconstruction error from the sparse coding
model. Statistical significance was assessed with Williams’ t test (for two correlation values sharing one common
variable on the same population). ***: p < .001
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