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Abstract

When we enter a room, perception is challenged to con-
vert sensory data into complex mental representations
such as scene geometry. This leaves our percepts both
strikingly sparse but also structured so as to support the
flexibility of cognition. Here, we apply a new formal model
of attention, adaptive computation, to reveal patterns of
spatial attention and geometric selectivity in the context
of perception of indoor scenes. The model uses the goal
of navigating to a visible exit to guide selective process-
ing over a multi-granular scene geometry model, which
can represent regions in the room at different levels of
resolution. Together the components of goal-driven pro-
cessing and multi-granular scene states enables the ef-
ficient investment of computational resources to resolve
geometry relevant to navigational affordances. In the con-
text of a change detection task, we show that both goal-
directed attention and multi-granular geometry represen-
tations are critical to explaining human responses. To-
gether, adaptive computation and multi-granular geome-
try representations form powerful computational tools for
studying scene networks.
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Our percepts of everyday scenes are strikingly selective,
often drastically impacted by our momentary goals. If in the
hall shown in Fig. 1, you will meet with a friend down the hall
by the exhibits, you will see the general outline of the room,
the obstacle in the middle, and people scattered around, while
coarsely summarizing the rest (e.g., the stairs to the left).

This example illustrates three core aspects of perception
that so far have eluded a coherent computational account.
First, scene percepts are structured with scene geometry
and entities, that can support flexible planning in a three-
dimensional (3D) world. Second, different representations in
a single percept can vary along a ladder of granularity, with
some regions more finely represented than others. Third,
tasks such as navigation drive the distribution of granularity to-
wards relevant dimensions of the scene. Existing frameworks
of perception only address individual aspects of scene per-
ception — with generative approaches emphasizing structure
and uncertainty (e.g., Bayesian models of perception and cog-
nition; Chater, Tenenbaum, and Yuille (2006)) and discrimina-
tive models emphasizing information loss (e.g., task-optimized
deep neural networks; Yamins and DiCarlo (2016)).

Here, we present a new computational architecture to
reverse-engineer scene perception. This architecture arises
from a principled integration of perception and planning,
based on a recently proposed account of attention — adap-
tive computation (Belledonne, Butkus, Scholl, & Yildirim,
2023). Adaptive computation is a mechanism for bound-
ing and scheduling perceptual processing to construct goal-
conditioned structured representations. We use adaptive
computation to selectively process a multi-granular genera-
tive model of scene geometry, yielding efficient allocation of

computational resources to resolve scene geometry relevant
to navigational affordances. The resulting model carves a new
theoretical landscape in which the result of inference is high-
level, structured scene representations similar to structured
Bayesian models, while enjoying “intelligent” information loss
by conditioning these representations to the goals of the ob-
server, similar to task-optimized DNNs.

We show that this model explains human performance in
a change-detection task with indoor scene images. Crucially,
this task never overtly mentions anything navigation related;
instead, it measures spontaneous, automatic visual process-
ing. In this way, the computations and representations stipu-
lated by our model, adaptive computation and multi-granular,
are likely recruited automatically during visual processing.

Figure 1: Scene perception can be strikingly selective, im-
pacted by our goals, including navigational targets.

Computational model
We formalize the perception of goal-conditioned (i.e., selec-

tive) scene geometry through a new form of “intelligent” infor-
mation loss, adaptive computation, that flexibly exploits tasks
for the efficiencies they afford. Adaptive computation bounds
and schedules computational steps (e.g., Bayesian updates)
based on a universal measure of task relevance that inte-
grates the impact of perceptual processing on planning out-
comes. This yields a mechanism for automatically carving
navigational affordances out of a generative model with multi-
granular scene geometry.

Attention Map ) Plan
® 3. Universal o o
g task-relevance 4.5 £l
7 — kY
2 g
g g
3 5
] 8 <
4. Adaptive Computation (Multi ng;‘:Llliliar:_nF;:?H pTanning)
(Where to allocate C,)

Multi-granular world model, S
Input \ =

1. Perception, § —y ]
(VAE for bottom up proposal 1
+ MCMC for C))

—_— (0]
[Dobserver  [Exit

Figure 2: Model architecture that carves goal-conditioned
scene percepts in multi-granular generative models. See text.
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Multi-granular perception We start by describing the target
of the perceptual system, the multi-granular scene state. The
scene state, S, consists of spatial “trackers” that represent the
occupancy probability for a given region. These trackers are
the leaf nodes of a quad-tree (Finkel & Bentley, 1974), sup-
porting multi-granularity by modulating the number of regional
subdivisions, with more divisions in a given region leading
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Figure 3: Multi-granularity and adaptive computation are both needed to explain change detection behavior. See text.

to more geometric resolution. The generative model defines
a prior over these quad-tree states, Pr(S), via a generative
process that iteratively subdivides a region in space into four
quadrants (implemented in Gen.jl; Cusumano-Towner, Lew,
and Mansinghka (2020)) — up to a maximum of 5 subdivisions
(i.e., maximum resolution of 32x32). Each leaf node, s; € S,
determines the Bernoulli weight of obstacle occupancy, draw-
ing from a uniform distribution over [0, 1] (0: empty, 1: full).

The generative model makes graphical predictions from §
by projecting the leaf node weights s; € S to a 3D volume. The
transparancy of a region reflects the the geometric uncertainty
of its underyling leaf node, with occupancy weights closer to
1 appear more opaque. This volume is then rendered into a
128x128 RGB image using a volumetric renderer (Jakob et al.,
2022) with the resulting image, Y, serving as the mean of the
likelihood over a given observation , Pr(X | §) = N(X;Y,,Ys)
, Where Y5 = 0.05 denotes a diagonal covariance matrix.

The unit of computation, Cy, for the perceptual system de-
notes a Bayesian update over s; € S that collectively approx-
imate the posterior over scene geometry Pr(S | X) o< Pr(X |
S)Pr(S). These updates have two parts: (i) random walk over
the occupancy weight in s, and (ii) splitting s into 4 children
or merging s with its siblings. Applying C; to S updates an
individual node " = S_; Us) where s} is the updated node,
and produces a divergence metric that follows from the i,nverse
of the Monte Carlo transition kernel: §;S = W.
Given an image X, the nodes, s; € S, are coarsely initialized
by decoding occupancy weights from the embedding of a vari-
ational autoencoder (Burgess et al., 2018) that was trained on
draws from the generative model.

Multi-granular path planning For planning, the model
projects S into a lattice graph connecting neighboring termi-
nal. To compute the shortest path to the exit node, =, the
model uses the A* algorithm (Russell, 2010; Fairbanks et al.,
2021), weighting the cost of traversing a node in terms of its
size (coarser nodes are larger) and occupancy probabilities
(i.e., it is more costly to navigate through a region likely to
have obstacles). With an updated scene percept S’ and its
associated plan 7, the divergence in planning is the L2 differ-
ence in the cost of these shortest paths, 87t = ||c(Tt) — c(@')||.
Integration with adaptive computation The model inter-
faces these perception and planning systems via adaptive

computation to enable selective processing of scene geom-
etry along dimensions relevant to navigation. Given an ini-
tial S, the task relevance % of each terminal node sy is ap-
proximated when applying Cy. Adaptive computation then al-
locates the following computational stegs according to these

task-relevance scores — via softmax(%). As S is updated,
so too are task-relevance scores, adapting the allocation of
the remaining computational steps, for a total of 150 steps.

Results
Model infers navigational affordances The model yields

goal-conditioned scene geometry inferences: given input im-
ages that differ only in their door location (Fig. 3A, B) the
model’s attention maps and plans substantially diverge, which
culminate with differences in the inferred geometries between
these computation traces (Fig. 3C,D). The model thus gen-
erates a novel representational quantity: navigation-relevant
geometry representations.
Explaining human change detection rates We evaluated
this model on a dataset of human change detection task
(N=45) that previously reported an impact of navigational
affordances during the spontaneous processing of indoor
scenes (Belledonne, Bao, & Yildirim, 2022). On each trial,
subjects briefly viewed images of two rooms in succession
(Fig. 3A,B). These scenes had a visible exit across the room
(either to the left or right) and obstacles in between. Between
the two images of a change detection trial (e.g., Fig. 3A), ob-
stacle placement was modified (with door location constant).
Across 30 trial-pairs that shared the same underlying obstacle
placements (and modifications) and only differed in terms of
door location, we compared the differences in human detec-
tion rates with the differences in model geometry inferences.

We find that the model explains significant variance in de-
tection rates (R> = .27, p < .01, Fig. 3E). Critically, both muilti-
granularity and attention are necessary for this outcome as
either ablation of the model fail to match behavior (p = .35,
p = .90, respectively; Fig. 3E).

Conclusion

Our results offers a new perspective of perception — as a
process of carving goal-conditioned world models in multi-
granular generative models. Future work can use these traces
to explain high-resolution behavioral (e.g., scene reconstruc-
tion) and neural (ECoG) measurements.
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